Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Термодинамика. Первый закон термодинамики
Термодинамика – это наука о тепловых явлениях. Выводы термодинамики опираются на совокупность опытных фактов и не зависят от наших знаний о внутреннем устройстве вещества, хотя в целом ряде случаев термодинамика использует молекулярно-кинетические модели для иллюстрации своих выводов. Термодинамика рассматривает изолированные системы тел, находящиеся в состоянии термодинамического равновесия. Это означает, что в таких системах прекратились все наблюдаемые макроскопические процессы. Важным свойством термодинамически равновесной системы является выравнивание температуры всех ее частей. Одним из важнейших понятий термодинамики является внутренняя энергия тела. Все макроскопические тела обладают энергией, заключенной внутри самих тел. С точки зрения молекулярно-кинетической теории внутренняя энергия вещества складывается из кинетической энергии всех атомов и молекул и потенциальной энергии их взаимодействия друг с другом. Отсюда вытекает закон Джоуля, подтверждаемый многочисленными экспериментами. Внутренняя энергия идеального газа зависит только от его температуры и не зависит от объема Молекулярно-кинетическая теория приводит к следующему выражению для внутренней энергии одного моля идеального одноатомного газа (гелий, неон и др.), молекулы которого совершают только поступательное движение: Внутренняя энергия U тела однозначно определяется макроскопическими параметрами, характеризующими состояние тела. Она не зависит от того, каким путем было реализовано данное состояние. Внутренняя энергия тела может изменяться, если действующие на него внешние силы совершают работу (положительную или отрицательную). работа газа выражается формулой: Работа численно равна площади под графиком процесса на диаграмме (p, V). Величина работы зависит от того, каким путем совершался переход из начального состояния в конечное.. Процессы которые можно проводить в обоих направлениях, называются обратимыми Внутренняя энергия тела может изменяться не только в результате совершаемой работы, но и вследствие теплообмена. При тепловом контакте тел внутренняя энергия одного из них может увеличиваться, а другого – уменьшаться. Количеством теплоты Q, полученным телом, называют изменение внутренней энергии тела в результате теплообмена. Передача энергии от одного тела другому в форме тепла может происходить только при наличии разности температур между ними. Тепловой поток всегда направлен от горячего тела к холодному. Первый закон термодинамики является обобщением закона сохранения и превращения энергии для термодинамической системы. Он формулируется следующим образом: Изменение Δ U внутренней энергии неизолированной термодинамической системы равно разности между количеством теплоты Q, переданной системе, и работой A, совершенной системой над внешними телами. Δ U = Q – A Соотношение, выражающее первый закон термодинамики, часто записывают в другой форме: Q = Δ U + A Количество теплоты, полученное системой, идет на изменение ее внутренней энергии и совершение работы над внешними телами. Применим первый закон термодинамики к изопроцессам в газах. В изохорном процессе (V = const) газ работы не совершает, A = 0. Следовательно, Q = Δ U = U (T2) – U (T1). В изобарном процессе (p = const) работа, совершаемая газом, выражается соотношением A = p (V2 – V1) = p Δ V Первый закон термодинамики для изобарного процесса дает: Q = Δ U + p Δ V В изотермическом процессе температура газа не изменяется, следовательно, не изменяется и внутренняя энергия газа, Δ U = 0. Первый закон термодинамики для изотермического процесса выражается соотношением Q = A Наряду с изохорным, изобарным и изотермическим процессами в термодинамике часто рассматриваются процессы, протекающие в отсутствие теплообмена с окружающими телами – такие процессы называются адиабатическими. Литература 1. Детлаф А.А., Яворский Б.М, Курс физики: Уч. пос. для втузов. Изд. 4-е, испр. - 607 с. М: Высшая Школа, 1989г. 2. Трофимова Т.И. Краткий курс физики: Уч. пос. для вузов. Изд. 2-е, испр. – 352 с, М: Высшая Школа, 2002 г. 3. Савельев И.В. Курс общей физики. Механика. Молекулярная физика. 350с, т. М.Наука. 1989. 4. Трофимова Т.И. Курс физики: Учебное пособие для инженерно-технических специальностей ВУЗов, Изд. 6-е/ 7-е - 542 с. М: Высшая Школа, 1999 г. Лекция №14 (тезисы) Популярное:
|
Последнее изменение этой страницы: 2016-08-24; Просмотров: 660; Нарушение авторского права страницы