Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Упругие силы. Продольное сжатие и растяжение. Закон Гука.



Упругие силы.

Упругостью называют свойство восстанавливать времменно утраченную форму и объём, а деформациями- само изменение формы и объёма тела. Причиной упругости является наличие одновременно присутствующих сил взаимодействия между частицами тела- притяжения ( ) и отталкивания ( ). Равнодействующая этих сил равна: (200)

На рис.46 представлены графики силы взаимного отталкивания (1), притяжения (2) и равнодействующая этих сил (3). На расстоянии между взаимодействующими частицами равнодействующая равна нулю (положение равновесия). При < преобладают силы отталкивания, а при > силы притяжения.

Потенциальная энергия взаимодействия на расстоянии между частицами:

(201)

где: .

Графики потенциальной энергии сил отталкивания (1), притяжения (2) и равнодействующей (3) представлены на рис.47:

 

Рис.46 рис.47

 

 

Продольное сжатие и растяжение.Закон Гука.

При продольном сжатии или растяжении одного упругого образца длинны и площади сечения удлинение образца определяется из опыта выражением:

где - коэффициент упругости, определяемый свойствами материала образца.

Величина называется относительной деформацией. Величина , обратная коэффициенту упругости, называется модулем упругости Юнга.

С учётом этих обозначений закон Гука для деформации продольного сжатия или растяжения имеет вид:

(203)

где - называется напряжением (отношение упругих сил в деформированном образце к площади его поперечного сечения).

При изменении продольных размеров одновременно и поперечные. Изменение диаметра образца (однородного цилиндра) также подчиняется закону Гука:

(204)

где: -коэффициент поперечного сжатия при продольном растяжении.

Сравнивая (203) и (204) получим:

(205)

Величина называется коэффициентом Пуассона.

 

Рис.48

Если деформирующая сила изменяется от нуля до , абсолютная деформация изменяется, соответственно, от нуля до то образец приобретает потенциальную энергию упругих деформаций, численно равную работе деформирующей силы. Эта работа равна площади заштрихованной фигуры (рис.48), т.е:

Используя закон Гука, получим:

(206)

А плотность энергии, соответственно:

(207)

 

 

Деформация сдвига и кручения.

Деформация сдвига.

Деформация сдвига возникает при действии на тело касательных усилий (рис. 49). Если к верхней грани образца, имеющего форму параллелепипеда, приложена касательная сила , распределённая по грани площади , грань сдвигается на расстояние , которое называется абсолютной деформацией при сдвиге.

Относительной деформацией называют отношение абсолютной деформации к поперечным размерам . Для сдвига закон Гука принимает форму:

где -коэффициент сдвига, определяемый свойствами материала образца, величина, обратная , называется модулем сдвига

Поскольку упругие деформации, для которых формулируется закон Гука, имеют место только при маленьких значениях деформации, закон Гука для сдвига принимает вид:

(209)

Деформация кручения.

Деформации кручения возникают при закручивании одного основания образца относительно другого:

По закону Гука для этого типа деформации: (210)

где - угол закручивания, - длина образца, - момент закручивающих сил, - коэффициент кручения.

Величина называется модулем кручения т. е. (211) Одновременно с закручиванием образца происходит сдвиг его слоёв. Угол сдвига определяется из закона Гука.

(212)

Угол сдвига можно получить и из чисто геометрических соображений: (213)

Сравнивая (212) и (213), получим Момент распределённых сил, приложенных к нижнему основанию образца, получим, используя

Из рис.51 видно, что элементарный момент закручивающих сил, приложенных к элементу основания, равен:

(215)

Полный момент: (216)

Сравнивая (210) и (216), получаем связь между модулями сдвига и кручения: (217)

 

Закон всемирного тяготения.

 

Закон всемирного тяготения получен Ньютоном из наблюдений видимого движения планет Солнечной системы, используя законы динамики. В векторной форме закон всемирного тяготения, определяющий силы гравитационного взаимодействия, имеет вид: (218)

где - масса источника гравитационного поля, - величина пробной массы, -радиус-вектор точечной пробной массы относительно центра масс источника поля, - гравитационная постоянная.

Силовой характер поля источника является сила, действующая на единичную пробную массу, помещённую в данную точку поля. Эта величина называется напряжённостью поля: (219)

Следует отметить, что закон всемирного тяготения справедлив только для точечных взаимодействующих масс. Кроме того, массы тел, фигурирующие в законе всемирного тяготения, имею другой смысл, нежели в законах динамики. Это –“тяготеющие”, ”тяжёлые” или ”гравитационные” массы.


Поделиться:



Популярное:

  1. I. 11. Законы земледелия. Суть законов: минимума, максимума, оптимума; взаимодействия факторов.
  2. II. Имперское законодательство
  3. II.3. Закон действия и результата действия
  4. VI. ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ
  5. VI. Распределение законодательной власти
  6. Административно-правовой статус закреплен в Конституции РФ, законах и в нормативных актах (как правило, положениях об органах).
  7. Амет-хан еще перед вылетом на разведку изучил маршрут и, возвращаясь, старался опознать нужные ориентиры. Скоро должен был закончиться лес, впереди — широкий луг с проселочной дорогой.
  8. Анализ графика подъёмной силы.
  9. Атомное ядро. Энергия связи и дефект массы ядра. Радиоактивное излучение и его виды. Закон радиоактивного распада.
  10. Афина Варвакион. Уменьшенная мраморная копия римского времени с Афины Парфенос Фидия, законченной после 438 г. до н. э. Афины. Национальный музей.
  11. Биномиальный закон (распределение Бернулли)
  12. Биномиальный закон распределения. Закон Пуассона


Последнее изменение этой страницы: 2016-08-31; Просмотров: 624; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.021 с.)
Главная | Случайная страница | Обратная связь