![]() |
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
ЛАБОРАТОРНАЯ РАБОТА №7. ОПРЕДЕЛЕНИЕ СКОРОСТИ ЗВУКА В ВОЗДУХЕ МЕТОДОМ СТОЯЧЕЙ ВОЛНЫ
Цель работы: изучение закономерности образования стоячей волны и ее использование для экспериментального определения скорости звука. Описание экспериментальной установки и оборудования Экспериментальная установка представляет собой (рисунок 1) металлическую трубу 1 с двумя, находящимися в ней, металлическими поршнями: неподвижным 2 и подвижным 5. Рис.7.1. В неподвижный поршень вмонтирован динамик 3 – источник звука, который питается от генератора звуковой частоты 4. В подвижный поршень с внутренней стороны его поверхности вмонтирован приемник звука – микрофон 6, сигнал с которого подается на электронный осциллограф 7. Подвижный поршень снабжен указателем 9 и может перемещаться вдоль трубы с помощью привода 10. Положение поршня фиксируется указателем 9 по шкале 8. В металлической трубе воздух, в котором необходимо определить скорость распространения звука методом стоячей волны. Общие сведения. Физические основы эксперимента При непрерывной работе источника звука в трубе лабораторной установки наблюдается распространение двух встречных волн: прямой от источника звука и обратной от отражающего поршня 5. Эти волны накладываются друг на друга во всем пространстве от источника до отражателя и интерферируют. Рассмотрим результат их интерференции в некоторой точке М, находящейся на расстоянии Рис.7.2. Уравнение прямой волны, пришедшей в точку М:
Уравнение обратной волны:
где
введенное в уравнение (2) « Уравнение (2) можно переписать в виде:
Результирующие колебания в точке М найдем как
где Образованная в результате интерференции волна называется стоячей. Выражение (3) – это уравнение стоячей волны, в нем Из уравнения (3) стоячей волны вытекает, что все точки волны совершают колебания с одинаковыми частотами
Из (4) определим расстояние между соседними узлами: В точках стоячей волны, где
Расстояние между соседними пучностями не трудно найти из (5):
График амплитуды стоячей волны в зависимости от положения Если подвижный поршень 5 лабораторной установки (рисунок 1) установить первоначально вплотную к источнику звука 3, а затем постепенно перемещать его, удаляя от источника звука, то всякий раз, когда расстояние между ними будет равно Если эти положения поршня фиксировать по шкале 8, то можно найти расстояния между соседними узлами стоячей волны
где Популярное:
|
Последнее изменение этой страницы: 2016-08-31; Просмотров: 1416; Нарушение авторского права страницы