Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Работа рычажно-тормозной передачи
Рычажно-тормозная передача с пневматическим приводом действует следующим образом. Под действием сжатого воздуха шток выходит из тормозного цилиндра и давит на верхнее плечо тормозного рычага. В нижнем шарнире (мертвая точка) происходит его поворот. Такое движение будет происходить до тех пор, пока тормозная колодка не подойдет к колесу, после чего мертвая точка из нижнего шарнира перейдет в шарнир подвески тормозной колодки. При дальнейшем движении верхнего плеча рычага в том же направлении нижнее его плечо начнет перемещаться в обратном направлении вместе с параллельными тягами, которые приведут в движение средний рычаг, мертвая точка которого находится в точке его подвески. В дальнейшем произойдет нажатие обеих колодок на колесо с силой, соответствующей усилию на штоке тормозного цилиндра, умноженному на передаточное число рычажной передачи. При прекращении торможения после выхода воздуха из тормозного цилиндра производится отпуск тормозов, и тормозные колодки отходят от колес под действием оттормаживающей пружины. При торможении оттормаживающая пружина получает натяжение, а при отпуске тормозов натянутое состояние пружины приводит к отводу тормозных колодок от колес, устанавливая их в исходное положение. Концевой рычаг также становится в исходное положение под действием возвратной пружины в тормозном цилиндре. Передаточное число рычажно-тормозной передачи Рычажно-тормозная передача характеризуется передаточным числом, которое показывает, во сколько раз суммарное нажатие тормозных колодок узла больше усилия на штоке тормозного цилиндра или во сколько раз выход штока тормозного цилиндра больше среднего зазора между одной колодкой и колесом. Передаточное число зависит от соотношения длин плеч рычагов, составляющих рычажно-тормозную передачу. На вагонах метрополитена передаточное число одного узла (от тормозного цилиндра к двум колодкам) составляет 6, 56. Согласно существующим нормам выход штоков тормозных цилиндров должен быть 50 - 55 мм, но не более 65 мм в эксплуатации. Следовательно, зазор между колодкой и колесом в первом случае составит 50÷ 55/6, 56 = 7÷ 8 мм, а во втором 65/6, 56 = 10 мм КПД тормоза Фактическая сила нажатия колодок на колесо всегда меньше расчетной. Потери происходят из-за следующих факторов: · необходимость преодоления усилий возвратной пружины тормозного цилиндра и пружины оттормаживающего устройства · трение в подвижных элементах · увеличение люфта в шарнирах из-за выработки · неправильное положение концевого и среднего рычагов из-за перекоса (между рычагами и параллельными тягами в момент прижатия колодок к колесу должен быть угол по возможности ближе к 90º ) КПД тормоза принимается равным 75÷ 80% Регулировка рычажно-тормозной передачи По мере износа тормозных колодок зазоры между колодками и колесами, а также и выход штоков тормозных цилиндров увеличиваются, и при предельно допустимых размерах осуществляют регулировку передачи для каждого узла в отдельности. При этом учитывают диаметры колес, уменьшение которых требует соответствующего приближения к ним тормозных колодок. Это означает, что регулировка фактически сводится к изменению рабочей длины тяг, соединяющих рычаги друг с другом. Грубую регулировку выполняют перестановкой валиков средних рычагов в соответствующие отверстия нижних параллельных тяг в зависимости от диаметра колес. Валик соединения со средним рычагом должен быть размещен: · при диаметре колеса 785-750 мм в первом (крайнем) отверстии · менее 750 мм - во втором (внутреннем) отверстии Точную регулировку осуществляют регулировочными винтами, которые расположены на нижних параллельных тягах. Один оборот при затяжке регулировочного винта уменьшает выход штока тормозного цилиндра на 6-7 мм. Для концевого рычага с концевой колодкой производится также регулировка с помощью регулировочной гайки и винта оттормаживающего устройства. 1 - оттормаживающее устройство В первую очередь регулируют средний зазор между тормозными колодками и колесом. Средний зазор должен быть выставлен в пределах 7÷ 8 мм. После этого приступают к регулировке верхних и нижних зазоров между колодками и колесом. Ее выполняют с помощью фиксаторов положения тормозных колодок. Для этого необходимо отвернуть контргайку и вращая гайку в одну или другую сторону переместить стержень по втулке. Колодка связана со стержнем при помощи пальца, который крепится к колодке выше основного валика. Поэтому тормозная колодка начнет поворачиваться относительно основного валика. Верхние зазоры между колодками и колесом должны быть выставлены в пределах 10÷ 12 мм, а нижние зазоры 4÷ 6 мм. Тормозной цилиндр Тормозной цилиндр служит для создания тормозного усилия на ободе колесной пары и является приводом тормозной рычажной передачи для обеспечения торможения. На каждом вагоне восемь тормозных цилиндров. Они установлены на плоских кронштейнах в торцах продольных балок рам тележек. Каждый цилиндр крепится четырьмя болтами. Устанавливаемые на тележке тормозные цилиндры однокамерные с самоустанавливающимся штоком, шарнирно связанным с поршнем. Шток имеет шаровой наконечник, который устанавливается в сферическую впадину опоры поршня и крепится на ней при помощи кольца и направляющей трубы. На штоке при помощи штифта укреплена вилка с отверстиями, которые армированы втулками. Разность выхода штоков тормозных цилиндров на одной тележке допускается не более 5мм. Тормозные колодки Тормозная колодка представляет собой штампованный стальной башмак, на который напрессовывается методом горячего формирования фрикционная масса. Фрикционная масса изготавливается на каучуковой или композиционной основе. Колодки гребневые, то есть имеют дополнительную боковую часть для обхвата гребня бандажа, что препятствует сползанию колодки по конусной части бандажа. На рабочей поверхности колодок для лучшего охлаждения сделана косая канавка, разделяющая на две части поверхность трения. Толщина новых колодок составляет 40÷ 45 мм, а изнашиваются они до толщины 12 мм. После износа колодок остатки массы выжигают в печах, а тыльники используют снова для напрессовки на них новых колодок. Средний срок службы тормозной колодки составляет 4 года. Параллельность положения тормозных колодок относительно поверхности колеса и их разворот регулируют с помощью стержней фиксаторов тормозных колодок. Коэффициент трения тормозных колодок - 0, 4. Однако он снижается при нагреве колодок, а также в сырую погоду на открытых участках линии. Другим недостатком пластмассовых колодок является их плохая теплопроводность. По этой причине на поверхности катания образуется сетка трещин термического происхождения. Проводимые работы по исследованию материалов тормозных колодок сводятся к стабилизации коэффициента трения независимо от вышеуказанных факторов. В состав фрикционной массы у колодок на каучуковой основе входит тертый каучук, железный сурик, асбест, окись цинка, барит и др. В состав композиционных колодок дополнительно входит набор различных пластических масс, включая синтетические смолы.
Оттормаживающее устройство Оттормаживающее устройство состоит из оттормаживающей пружины, заведенной через специальный кронштейн, и регулировочной втулки с резьбовым стержнем. Предназначено для быстрого отвода тормозных колодок от колес. Оттормаживающее устройство 1 - стержень Стержень оттормаживающего устройства соединен с нижней частью подвески концевого рычага. При торможении концевой рычаг перемещается к колесу. Вместе с ним начинает перемещаться вниз относительно неподвижного кронштейна и стержень. Пружина начинает сжиматься. В момент отпуска тормоза пружина начнет разжиматься и вместе с возвратной пружиной тормозного цилиндра будет способствовать быстрому отводу концевого рычага вместе с тормозной колодкой от колеса. Оттормаживающее устройство предназначено также для точной регулировки среднего зазора между концевой тормозной колодкой и колесом. Стабилизирующее устройство Стабилизирующее устройство представляет собой подпружиненный упор со сферической опорной поверхностью. Оно предназначено для ограничения бокового перемещения средних тормозных колодок. Стабилизатор представляет собой неподвижный упор, который при помощи хомута крепится к круглому кронштейну на продольной балке рамы тележки. В упор ввернут регулировочный винт. Винт можно вращать с помощью курбеля. С внутренней стороны винт стопорится контргайкой. Торец винта, упирающийся при торможении в средний рычаг, имеет сферическую опорную поверхность. Зазор между винтом и средним рычагом не должен превышать 1, 5 мм при отпущенном тормозе. При этом не допускается свес тормозной колодки за пределы наружной грани колеса или бандажа.. Антивибрационное устройство Для уменьшения шума и вибрации тормозной рычажной передачи средние рычаги оборудованы антивибрационным устройством. Антивибрационное устройство представляет собой пружину, которая через ось крепится к кронштейну на продольной балке рамы тележки. Нижним концом пружина через прокладку зажата в соединении среднего рычага с основным валиком крепления тормозной колодки. Эта пружина постоянно натянута. С ее помощью уменьшаются зазоры в соединениях среднего рычага с колодкой и вследствие этого уменьшается шум и вибрация всей рычажно-тормозной передачи. Ручной тормоз Помимо пневматического привода, рычажно-тормозная передача на вагонах типа " Е" и " Еж-3" снабжена ручным приводом. Им пользуются при длительной стоянке поезда или при отсутствии давления сжатого воздуха в воздушных магистралях. Ручной (стояночный) тормоз состоит из колонки, установленной в кабине машиниста с левой стороны, и системы расположенных на кузове рычагов и тяг, связывающих колонку с рычажной передачей тележки. Особенностью ручного тормоза является то, что он действует на тормозные колодки только одной (левой) стороны вагона. Колонка ручного тормоза состоит из маховика с рукояткой, который через коническую пару шестерен передает вращение винту.
Рис. Ручной тормоз По винту поступательно вверх и вниз перемещается гайка, связанная тягами с кривым рычагом под рамой кузова. При вращении маховика по часовой стрелке кривой рычаг поворачивается вокруг своей оси, вызывая перемещение тяги с регулировочной муфтой. Передача усилия от ручного тормоза к двум левым узлам тормоза второй тележки осуществляется длинной тягой, составленной из трех частей, скрепленных болтами. Усилие от колонки ручного тормоза передается через наклонные тяги следующим образом. При движении вперед длинной тяги вместе с регулировочной муфтой большой поперечный плавающий рычаг начнет поворачиваться против часовой стрелки и одновременно двигаться вперед. При этом он натягивает тягу ко второй тележке. Тяга начнет двигаться назад, передвигая назад малый поперечный плавающий рычаг и поворачивая его против часовой стрелки. Через соединительную тягу движение назад передается малому поперечному рычагу, который будет поворачиваться по часовой стрелке. Осью его поворота является валик, через который малый поперечный рычаг соединяется с кронштейном рамы кузова вагона. Малые поперечные рычаги натягивают наклонные тяги к концевым рычагам и все восемь левых тормозных колодок подходят к колесам на обеих тележках. Наклонные тяги действуют на тормозные колодки так же, как и при пневматическом торможении шток поршня. При вращении маховика против часовой стрелки происходит отпуск ручного тормоза. Для доведения тормозных колодок до соприкосновения с колесами достаточно 16÷ 23 оборота маховика. Когда же будет исчерпан ход, необходимо приложить на маховик силу руки, приблизительно равную 20 кГс, с тем чтобы обеспечить прижатие колодок. Передаточное число колонки 50. Блок тормоз Блок-тормоз устанавливается на номерных вагонах и дополнительно к функциям тормозного цилиндра обеспечивает автоматическое торможение колесных пар при падении давления в напорной магистрали. Блок-тормоз устанавливается на месте первого левого и последнего правого тормозного цилиндра. Он представляет собой пневмопружинный прибор с пружинным аккумулятором энергии. В блок-тормозе в едином корпусе совмещены тормозной цилиндр и стояночный тормоз. Блок-тормоз состоит из корпуса сварной конструкции, изготовленного из труб с приварными фланцами и плитой для крепления его на раме тележки и бонками с резьбовыми отверстиями для присоединения трубопроводов. Корпус разделен на две камеры: · камера тормозного цилиндра (3) диаметром 125 мм · камера стояночного тормоза диаметром 200 мм Камеры разделены фланцем с отверстием под промежуточный шток, уплотненным манжетами. Составные элементы стояночного тормоза: · цилиндр стояночного тормоза · корпус пружинного аккумулятора, который крепится к цилиндру четырьмя болтами через уплотнительную прокладку · поршень стояночного тормоза с уплотнительными манжетами и кольцом. К поршню приварена втулка, которая имеет резьбу для оттормаживающего винта · пружина стояночного тормоза с усилием распрямления 1000 кГ · стакан, имеющий продольную проточку для его движения вдоль корпуса · дно стакана · оттормаживающий винт · промежуточный шток (толкатель) · обойма с тремя уплотнительными манжетами, которые отделяют рабочую камеру стояночного тормоза от тормозного цилиндра Рис. Блок-тормоз Работа блок-тормоза Управление стояночным тормозом осуществляется при помощи трехходового разобщительного крана. В движении состава этот кран открыт и рабочая камера стояночного тормоза сообщается с напорной магистралью. Усилием давления сжатого воздуха напорной магистрали поршень стояночного тормоза перемещается до упора во фланец корпуса и находится в крайнем правом положении. При этом он сжимает пружину, заряжая ее. В таком состоянии блок-тормоз находится при движении вагона и работает при этом в качестве тормозного цилиндра, осуществляя служебное торможение. Примечание. При включении стояночного тормоза путем перекрытия разобщительного крана рабочая камера стояночного тормоза отсекается от напорной магистрали и начинает сообщаться с атмосферой через отверстие в корпусе разобщительного крана. Сжатый воздух при этом выпускается из стояночной камеры. Пружина, находящаяся в заряженном состоянии, давит на поршень и через винт - на промежуточный шток, который передает усилие на поршень тормозного цилиндра, приведя в действие рычажную передачу. Произойдет затормаживание первой и четвертой колесной пары вагона. Для оттормаживания открывается разобщительный кран и рабочая камера стояночного тормоза вновь начинает сообщаться с напорной магистралью. Сжатый воздух подается в камеру стояночного тормоза, возвращая поршень и пружину в исходное положение. Для выключения стояночного тормоза при отсутствии сжатого воздуха в напорной магистрали необходимо надеть курбель на квадрат хвостовика оттормаживающего винта и вывинтить его до упора в дно. При этом выключается действие пружины на промежуточный шток и поршень тормозного цилиндра под действием возвратной пружины переместится в исходное положение. Комбинированная автосцепка Рис. Автосцепка Каждый вагон оборудован двумя комплектами комбинированной автосцепки, которые осуществляют механическую сцепку вагонов, соединение воздушных магистралей и электрических цепей вагонов.На вагонах всех модификаций применяется комбинированная автосцепка жесткого типа. При вписывании в кривые автосцепка способна перемещаться в горизонтальной плоскости (поперек пути) до 22º (по 11º в каждую сторону), а в вертикальной плоскости до 2, 5º. Конструкция автосцепки обеспечивает возможность поворота ее в горизонтальной плоскости на угол до 13º. Допускается сцеп при несоосности головок по вертикали не более 30 мм. Составные элементы автосцепки: · головка автосцепки со сцепным механизмом · пружинный ударно-тяговый аппарат · гнездо автосцепки с вертикальным валиком · подвеска автосцепки · электроконтактная коробка Головка автосцепки
Рис. Головка автосцепки Головка автосцепки представляет собой литой стальной корпус, выполненный в виде полой прямоугольной коробки, которая спереди заканчивается буферным фланцем. На буферном фланце расположены выступающий конус и такого же профиля конусообразная впадина с проемами для деталей замка. Кроме того на буферном фланце имеются два отверстия диаметром 60 мм для клапанов воздухопроводов, расположенные одно под другим в середине по вертикальной оси буферного фланца. Сзади коробка корпуса расточена под цилиндрическую поверхность для установки стяжных полуколец, соединяющих головку с ударно-тяговым аппаратом. Такая же проточка имеется и у передней фланцевой части хомута ударно-тягового аппарата. Оба эти фланца соединяются между собой стяжным хомутом (полукольцами). При затяжке болтов стяжного хомута натяжные конуса фланцев создают жесткое соединение головки с ударно-тяговым аппаратом автосцепки. При сцеплении вагонов выступы головок заходят во впадины встречных головок, чем и осуществляется жесткое фиксирование одной головки относительно другой. Сцепной механизм Механизм сцепления состоит из следующих элементов: · замок · серьга · валик · возвратная пружина · расцепной трос с рукояткой Замок представляет собой равноплечий рычаг дискообразной формы. К плечу рычага, где расположено отверстие, присоединяют серьгу. В плече имеется вырез, в который заходит серьга другой автосцепки при сцеплении вагонов. Центральная часть диска отлита в виде втулки. Вокруг втулки расположена канавка, в которой просверлены отверстия. Перпендикулярно линии расположения отверстий под валики на замке отлит специальный отросток к которому присоединяют расцепной трос с рукояткой и тягу блокировочного рычага электроконтактной коробки. Серьга имеет П-образную форму и заканчивается двумя проушинами, охватывающими диск замка и соединенными с ним с помощью валика. Нижняя проушина имеет отросток для упора в выступ замка с целью ограничения его поворота и фиксации самой серьги в корпусе головки автосцепки. С противоположной стороны серьга заканчивается цапфой, которая при сцеплении заходит в вырез замка другой автосцепки. Возвратная пружина обеспечивает поворот сцепного механизма в исходное положение после сцепления или расцепления головок автосцепок. Расцепной трос с рукояткой служит для расцепления автосцепок. Перед установкой на автосцепку тросик испытывают на растяжение усилием 200 кГ, а затем на его рукоятку наносится клеймо. Без этого клейма эксплуатация расцепного тросика запрещена. Работа сцепного механизма При сближении головок выступающие серьги скользят по поверхности конусных впадин встречных головок и, упираясь в боковые поверхности встречных замков, поворачивают одновременно каждая свой замок вокруг валика. Поворот происходит до тех пор, пока цапфы серег не войдут в вырезы замков встречных головок, что сопровождается характерным щелчком. После этого возвратные пружины возвратят замки в исходное положение и произойдет сцепление. Механическое расцепление осуществляют после выключения пневмопривода с помощью троса одной из головок. Трос, соединенный с отростком замка, заставляет его поворачиваться. При этом серьга поворачивающегося замка заставит повернуться замок второй головки. Когда цапфы серег выйдут из зацепления со встречными головками, можно разводить вагоны. Признаки правильного сцепления:
Рис. Работа сцепного механизма · между ударными плоскостями двух головок автосцепок должен быть средний зазор не более 5 мм. При расхождении осевой линии головок возможно изменение этого зазора, но не свыше 1 мм (с одной стороны 4 мм, а с другой 6 мм) · между тягой и рычагом блокировки должен быть острый угол - 60º. Если этот угол будет свыше 90º, то это означает, что цапфы серег не вошли в зацепление с захватами встречных замков и замки не развернулись обратно в исходное положение · короткое плечо рычага блокировки и сектор блокировки на наконечнике крана управления пневмоприводом ЭКК должны располагаться друг против друга. Это означает, что кран управления пневмоприводом в положении " Включено", и электрические пальцы (штепсельные разъемы) находятся в выдвинутом положении. При попытке расцепа (или сцепления) двух автосцепок, сегмент рычага упрется в сектор блокировки, не давая сцепить (или расцепить) автосцепки Расцепить или сцепить автосцепки можно только когда кран управления пневмоприводом находится в положении " Выключено". Рукоятка от расцепного тросика должна быть надежно закреплена на головке хомутом. В случае маневровых передвижений не закрепленная на головке рукоятка от расцепного тросика может зацепиться за выступающие части оборудования и, если электрическая частьдвух вагонов не соединялась, может произойти саморасцеп. Ударно-тяговый аппарат Рис. Ударно-тяговый аппарат. Ударно-тяговый аппарат служит амортизатором для смягчения ударов при сцеплении и упругого соединения вагонов, поглощает продольные ударные усилия, возникающие при неодновременном пуске или торможении вагонов в составе. Составные элементы ударно-тягового аппарата: · хомут · водило · две циллиндрические пружины и · две направляющие втулки для пружин и · корончатая гайка для крепления водила · шплинт · промежуточная шайба · направляющая втулка водила · стакан Хомут прямоугольной формы отлит из стали. Концевые части его выполнены в виде втулок с отверстиями, через которые проходит водило. С головкой автосцепки хомут соединяется стяжными полукольцами. На нижней стороне хомута на болтах установлен скользун из дубового бруса, прикрепленного к металлической планке. Скользун служит опорой автосцепки при ее перемещении по балансиру подвески. В хомут вставлены две циллиндрические пружины, находящиеся в сжатом состоянии. По концам пружин установлены направляющие втулки, а между ними - промежуточная шайба. Пружины навиты в разные стороны, благодаря чему компенсируется кручение их торцов при сжатии. Сквозь отверстия в хомуте и направляющих втулках проходит водило. На конец его надевается втулка, которая подводится корончатой гайкой до упора в переднюю направляющую втулку. Водило изготовлено из легированной стали и имеет циллиндрическую форму. Один конец водила имеет проушину с отверстием для установки валика серьги, другой - мелкую резьбу под корончатую гайку. При растяжении хомут своей хвостовой втулкой перемещает по водилу заднюю направляющую втулку, а при сжатии передняя втулка хомута перемещает переднюю направляющую назад. Таким образом, при сжатии и растяжении автосцепки пружины ударно-тягового аппарата работают только на сжатие. Ударно-тяговый аппарат рассчитан на усилие сжатия или растяжения до 10÷ 12 тонн. При тягово-ударной нагрузке свыше 10÷ 12 тонн пружины больше не сжимаются, так как обе направляющие втулки пружин своими торцами упрутся с двух сторон в промежуточную шайбу и усилие далее будет передаваться жестко. Суммарное сжатие двух пружин будет составлять порядка 56±6 мм. Хвостовая часть водила присоединена через серьгу к гнезду автосцепки на раме кузова. Через горизонтальный шарнир (валик с шайбой и шплинтом) серьга соединена с водилом, а через вертикальный шарнир (валик) - с гнездом автосцепки. Поверхности стальных валиков термообработаны. Перед установкой на вагон валики подвергают дефектоскопии. Тяговое усилие с головки автосцепки через стяжные полукольца передается на хомут ударно-тягового аппарата, а с хомута - на заднюю направляющую втулку, затем на пружины, гайку, водило, а с водила на валик серьги, серьгу, валик гнезда и гнездо автосцепки, раму кузова. При ударной нагрузке усилие с головки автосцепки передается на стяжные полукольца и хомут ударно-тягового аппарата, с него - на переднюю направляющую втулку и водило, с водила - на горизонтальный и вертикальный валики, гнездо автосцепки и на раму кузова. Гнездо автосцепки Связь автосцепки с рамой кузова осуществляется через гнездо автосцепки. Гнездо выполнено в виде увеличенных по высоте хребтовых балок, в нижней части которых приварены две усиливающие накладки, образуя коробчатое сечение. В центральной части этой коробки вварена втулка, в которую запрессован шарнирный подшипник ШС-60, который дополнительно фиксируется во втулке сверху стопорным кольцом. Внутреннее кольцо шарнирного подшипника связано вертикальным валиком с вильчатой проушиной водила, а валик фиксируется дополнительно шплинтом снизу. Популярное:
|
Последнее изменение этой страницы: 2016-08-31; Просмотров: 1756; Нарушение авторского права страницы