Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Проблемы с одиночным наследованием



 

Давайте продолжим работу над программой о животных и предположим, что в ней теперь используется два класса, произведенных от какого-то общего класса. Один — Bird, посвященный птицам, а другой — Mammals, посвященный млекопитающим. Класс Bird содержит функцию-член Fly(), задающую возможность полета. Класс Mammals разбит на ряд подклассов, включая класс лошадей — Horse. Класс содержит две функции- члена — Whinny() и Gallop(), объявляющих ржание и бег галопом соответственно.

Но внезапно у вас возникает желание создать новый весьма интересный мифический объект — крылатого Пегаса (Pegasus), который был бы чем-то вроде гибрида между Horse и Bird. Сразу предупредим, что, используя только одиночное наследование, вам сложно будет справиться с этой задачей.

Если объявить объект Pegasus как член класса Bird, то для него станут недоступными функции Whinny() и Gallop(). Если Pegasus объявить как объект класса Horse, то ему станет недоступной функция Fly().

Первое решение может состоять в том, чтобы скопировать метод Fly() в класс Horse, после чего в этом классе создать объект Pegasus. При этом оба класса (Bird и Horse) будут содержать один и тот же метод Fly(), и при изменении метода в одном классе нужно будет не забыть внести соответствующие изменения в другом классе. Хорошо, если таких классов будет только два. Если вам придется вносить изменения в программу через некоторое время после ее создания, будет сложно вспомнить, в каких еще классах представлен этот метод.

Когда вы захотите создать списки объектов классов Bird и Horse, перед вами возникнет еще одна проблема. Хотелось бы, чтобы объект Pegasus был представлен в обоих списках, но в данном случае это невозможно.

Для решения возникшей проблемы можно использовать несколько подходов. Haпример, можно переименовать слишком " лошадиный" метод Gallop() в более обтекаемый Move(), после чего заместить этот метод в объекте Pegasus таким образом, чтобы он выполнял функцию метода Fly(). В других объектах класса Horse метод Move() будет выполняться так же, как раньше выполнялся метод Gallop(). Для объекта Pegasus можно даже определить, что короткие дистанции он должен преодолевать методом Gallop(), а длинные — методом Fly():

Pegasus:: Move(long distance)

{

if (distance > veryFar)

fly(distance);

else

gallop(distance);

}

Но и этот подход имеет ряд ограничений, поскольку объект уже не сможет летать на короткие дистанции и бегать на длинные. Может быть, все же просто перенести метод Fly() в класс Horse, как показано в листинге 13.1? Проблема состоит в том, что лошади, в большинстве своем, летать не умеют, поэтому во всех объектах этого класса, за исключением объекта Pegasus, данный метод не должен ничего выполнять.

Листинг 13.1. Умеют ли лошади летать...

1: // Листинг 13.1. Умеют ли лошади летать...

2: // Фильтрация метода Fly() в классе Horse

3:

4: #include < iostream.h>

5:

6: class Horse

7: {

8: public:

9: void Gallop(){ cout < < " Galloping...\n"; }

10: virtual void Fly() { cout < < " Horses can't fly.\n"; }

11: private:

12: int itsAge;

13: };

14:

15: class Pegasus: public Horse

16: {

17: public:

18: virtual void Fly() { cout < < " I can fly! I can fly! I can fly! \n"; }

19: };

20:

21: const int NumberHorses = 5;

22: int main()

23: {

24: Horse* Ranch[NumberHorses];

25: Horse* pHorse;

26: int choice, i;

27: for (i=0; i< NumberHorses; i++)

28: {

29: cout < < " (1)Horse (2)Pegasus: ";

30: cin > > choice;

31: if (choice == 2)

32: pHorse = new Pegasus;

33: else

34: pHorse = new Horse;

35: Ranch[i] = pHorse;

36: }

37: cout < < " \n";

38: for (i=0; i< NumberHorses; i++)

39: {

40: Ranch[i]-> Fly();

41: delete Ranch[i];

42: }

43: return 0;

44: }

 

Результат:

(1)Horse (2)Pegasus; 1

(1)Horse (2)Pegasus: 2

(1)Horse (2)Pegasus: 1

(1)Horse (2)Pegasus: 2

(1)Horse (2)Pegasus: 1

Horses can't fly.

I can fly! I can fly! I can fly!

Horses can't fly.

I can fly! I can fly! I can fly!

Horses can't fly.

 

Анализ: Безусловно, эта программа будет работать ценой добавления в класс Horse редко используемого метода Fly(). Это произошло в строке 10. Для объектов данного класса этот метод констатирует факт, что лошади летать не умеют. И только для объекта Pegasus метод замещается в строке 18 таким образом, что при вызове его объект заявляет, что умеет летать.

В строке 24 используется массив указателей на объекты класса Horse, с помощью которого метод Fly() вызывается для разных объектов класса. В зависимости от того, для какого из объектов в данный момент вызывается метод, программа выводит на экран разные сообщения.

 

Примечание: Показанный выше пример программы был значительно сокращен, чтобы выделить именно те моменты, которые сейчас рассматриваются. Так, для простоты программы из нее были удалены конструктор и виртуальные деструкторы.

Перенос метода вверх по иерархии классов

 

Очень часто для решения подобных проблем объявление метода переносят вверх по иерархическому списку классов, чтобы сделать его доступным большему числу производных классов. Но при этом есть угроза, что базовый класс уподобится кладовке, захламленной старыми вещами. Такой подход делает программу громоздкой и нарушает саму идею иерархии классов в C++, когда производные классы дополняют своими функциями небольшой набор общих функций базового класса.

Противоречие состоит в том, что при переносе функции из производных классов вверх по иерархии в базовый класс трудно сохранить уникальность интерфейсов производных классов. Так, можно предположить, что у наших двух классов Bird и Horse есть базовый класс Animal, в котором собраны функции, общие для всех производных классов, например функция питания — Eat(). Перенеся метод Fly() в базовый класс, придется позаботиться о том, чтобы этот метод вызывался только в некоторых производных классах.

 

Приведение указателя к типу производного класса

 

Продолжая держаться за одиночное наследование, эту проблему можно решить таким образом, что метод Fly() будет вызываться только в случае, если указатель в данный момент связан с объектом Pegasus. Для этого необходимо иметь возможность обратиться к указателю и определить, на какой объект он указывает в текущий момент. Такой подход известен как RTTI (Runtime Type Identification — определение типа при выполнении). Но возможность выполнения RTTI была добавлена только в последние версии компиляторов C++.

Если ваш компилятор не поддерживает RTTI, можете реализовать его собственными силами, добавив в программу метод, который возвращает перечисление типов каждого класса. Возвращенное значение можно анализировать во время выполнения программы и допускать вызов метода Fly() только в том случае, если возвращается значение Pegasus.

 

Примечание: Не злоупотребляйте использованием RTTI в своих программах, так как этот подход рассматривается как аварийный и свидетельствует о том, что структура программы изначально была плохо продумана. Профессиональный программист предпочтет использование виртуальных функций, шаблонов или множественного наследования, речь о котором пойдет ниже в этой главе.

 

Чтобы вызвать метод Fly(), необходимо во время выполнения изменить тип указателя, определив, что он связан не с объектом Horse, а с объектом производного класса Pegasus. Этот способ называют приведением вниз, поскольку объект базового класса Horse приводится к объекту производного класса Pegasus.

Этот подход, хоть и с неохотой, теперь уже официально признан в C++, и для его реализации добавлен новый оператор — dynamic_cast.

Если в программе создан указатель на объекты базового класса Horse и ему присвоен адрес объекта производного класса Pegasus, то такой указатель можно использовать полиморфно. Чтобы обратиться к методу производного класса, нужно динамически подменить указатель базового класса указателем производного класса с помощью оператора dynamic_cast.

Во время выполнения программы происходит тестирование указателя базового класса. Если устанавливается, что текущий объект, на который ссылается указатель базового класса, в действительности является объектом производного класса, то с этим объектом связывается указатель производного класса. В противном случае указатель производного класса становится нулевым. Пример использования этого подхода показан в листинге 13.2.

Листинг 13.2. Приведение вниз

1: // Листинг 13 2 Использование оператора dynamic_cast

2: // Использование rtti

3:

4: #include < iostream h>

5: enum TYPE { HORSE, PEGASUS };

6:

7: class Horse

8: {

9: public

10: virtual void Gallop(){ cout < < " Galloping...\n"; }

11:

12: private:

13: int itsAge;

14: };

15:

16: class Pegasus: public Horse

17: {

18: public:

19:

20: virtual void Fly() { cout < < " I can fly! I can fly! I can fly! \n"; }

21: };

22:

23: const mt NumberHorse = 5,

24: int main()

25: {

26: Horse* Ranch[NumberHorse];

27: Horse* pHorse;

28: int choice, i,

29: for (i=0; KNumberHorse, i++)

30: {

31: cout < < " (1)Horse (2)Pegasus: ";

32: cin > > choice;

33: if (choice == 2)

34: pHorse = new fegasus;

35: else

36: pHorse = new Horse;

37: Rancfi[i] = pHorse,

38: }

39: cout < < " \n";

40: for (i=0; a< NumberHorses; i++)

41: {

42: Pegasus *pPeg = dynamic_cast< Pegasus *> (Ranch[i]);

43: if (pPeg)

43: pPeg-> Fly();

44: else

45: cout < < " Just a horse\n";

46:

47: delete Ranch[i];

48: }

49: return 0;

50: }

 

Результат:

(1)Horse (2)Pegasus: 1

(1)Horse (2)Pegasus: 2

(1)Horse (2)Pegasus: 1

(1)Horse (2)Pegasus: 2

(1)Horse (2)Pegasus: 1

Just a horse

I can fly! I can fly! I can fly!

Just a horse

I can fly! I can fly! I can fly!

Just a horse

 

Вопросы и ответы

Во время компиляции появляется сообщение об ошибке C4541: 'dynamic_cast' used on polymorphic type 'class Horse' with/GR-; unpredictable behavior may result

Как поступить?

Это сообщение MFC действительно может смутить начинающего программиста. Чтобы устранить ошибку, выполните ряд действий.

1. Выберите в окне проекта команду Project-> Settings.

2. Перейдите к вкладке С/C++.

3. Выберите в раскрывающемся списке Category опцию C++ Language

4. Установите Enable Runtime Type Information (RTTI).

5. Повторно скомпилируйте весь проект.

 

Анализ: Этот пример программы также будет вполне работоспособным. Метод Fly() не связан напрямую с классом Horse и не будет вызываться для обычных объектов этого класса. Он выполняется только для объектов класса Pegasus, но для этого программе приходится каждый раз анализировать, с каким объектом связан указатель, и приводить текущий указатель к типу производного класса.

Все же следует признать, что программы с приведением типа объектов выглядят несколько неуклюже и в них легко запутаться. Кроме того, данный подход идет в разрез с основной идеей полиморфизма виртуальных функций, поскольку выполняемость метода теперь зависит от приведения типа объекта во время выполнения программы.

 


Поделиться:



Популярное:

  1. II Проблемы рационального питания
  2. II.1.2. Глоссарий исследования «семиотика кино и проблемы киноэстетики»
  3. III. Проблемы внешней политики Турции
  4. XIII. Церковь и проблемы экологии
  5. XVI. Международные отношения. Проблемы глобализации и секуляризма.
  6. А. Проблемы пробуждения и стимуляции центров
  7. Актуальность. Обоснование проблемы и формулировка темы проекта.
  8. Актуальные проблемы правовой статистики
  9. Актуальные проблемы совершенствования деятельности налоговых органов РФ для реализации промышленно-торговой политики РФ в современных условиях хозяйствования
  10. Актуальные проблемы совершенствования деятельности налоговых органов РФ для реализации промышленно-торговой политики РФ в современных условиях хозяйствования.
  11. Актуальные проблемы совершенствования управления тамож дея-тью.
  12. Античная философия: основные периоды, проблемы и представители


Последнее изменение этой страницы: 2017-03-08; Просмотров: 434; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.044 с.)
Главная | Случайная страница | Обратная связь