Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Биологическая роль комплексных соединений



Комплексные соединения, рассмотренные нами выше, содержали лиганды, в основном, неорганической природы. Однако, в биологи-ческих системах огромную роль играют комплексные соединения, в которых в качестве лигандов выступают сложные органические молекулы, обладающие полидентатными свойствами (т. е., способны образовывать с комплексообразователем несколько связей).

Металлопротеины

К металлопротеинам относят биополимеры, которые, помимо белка, содержат простетическую группу (компонент небелкового характера), включающую ионы металлов.

Отдельную группу металлопротеинов составляют гемопро-теины, содержащие в качестве простетической группы соединения железа. Одним из важнейших гемопротеинов является гемоглобин. Он состоит из белка (глобина) и комплекса железа с порфирином (гема). В геме ион Fe2+ (комплексообразователь), связан с двумя атомами азота, принадлежащими порфириновому кольцу, ковалентной связью, а еще с двумя - координационной. Координа-ционное число Fe2+ равно шести: в порфириновом комплексе пятое координационное место занимает гистидиновая группа белка, образуя координационую связь атома азота с Fe2+. В отсутствие кислорода шестым лигандом является вода. В случае, когда вода замещается на кислород, образуется оксигемоглобин. Кроме воды и кислорода ион Fe2+ может связывать и некоторые другие лиганды, например, СО, CN- и оксиды азота. Так, с молекулами угарного газа гемоглобин образует карбоксигемоглобин, а с оксидами азота - метгемоглобин, содержащий ионы Fe3+. Накопление этих видов гемоглобина в крови приводит к снижению снабжения тканей кровью.

Схема образования связей в гемоглобине

Гем в виде гем-порфирина является простетической группой производных гемоглобина: миоглобина, каталазы, пероксидазыи цитохромов.

Отличительной особенностью гемоглобина (миоглобина) являет-ся постоянство степени окисления железа Fe2+. Равновесие:

О2 + гемоглобин ⇄ оксигемоглобин

в легких смещено вправо, а в клетках – влево.

Таким образом, гемоглобин (миоглобин) является переносчиком молекул (Н2О, О2).

Транспортные функции выполняют и цитохромы, в которых связь между гемом и полипептидной цепью осуществляется при помощи остатков цистеина белковой цепи.

Однако, в отличие от гемоглобина и миоглобина, механизм их действия основан на изменении степени окисления железа:

Fe2+ - Fe3+,

Fe3+ + Fe2+.

Передавая электроны от цитохрома b к цитохромооксидазе, ионы железа участвуют в процессе окислительного фосфорилирования.

С кислородом и СО цитохромы не взаимодействуют.

Витамины

Единственным витамином, содержащим в своей структуре металл, является витамин В12 (кобаламин).

В его состав входит ион Со3+, который находится в центре плос-кой корриновой системы (подобна порфириновой) и связан с атомами азота восстановленных пиррольных колец. Перпендикулярно плос-кости корриновой системы расположен нуклеотидный лиганд, состо-ящий из 5, 6-диметилбензимидазола и рибозы с остатком фосфорной кислоты. Наконец, шестым лигандом является цианид-ион.

Витамин В12 содержится в ферментных системах в виде В12-ко-ферментов или кобамидных коферментов - метилкобаламина, содер-жащего дополнительную метильную группу, и дезоксиаденозин-кобаламина, содержащего 5¢ -дезоксиаденозинкобаламин.

Так, метил-кобаламин выполняет функции переносчика метильной группы в реакции синтеза метионина. Кроме того, витамин В12 необходим для образования эритроцитов.

Недостаток витамина12 приводит к нарушениям деятельности нервной системы и вызывает резкое снижение кислотности желудоч-ного сока.

Схема образования связей в витамине B12 (кобаламине)

Ферменты

Ферментами называют класс веществ белковой природы, катали-зирующих большое число химических реакций. Ферменты обеспечи-вают реализацию генетической информации, а также обмен веществ и энергии. Ферменты отличаются от неорганических катализаторов значительно большей активностью и высокой специфичностью действия: один фермент, как правило, катализирует только одну химическую реакцию.

Действующим началом фермента карбоксипептидазы, катализи-рующего процессы гидролиза, является ион Zn2+. Ион цинка оттягивает на себя электроны карбонильной группы С = O в пептиде (- СО - NH -), в результате связь С = O еще больше поляризуется, что облегчает гидролиз и разрыв С-N связи.

Ионы цинка также входят в состав фермента карбоангидразы, который катализирует гидратацию СО2, т. е. образование иона НСО3-, и в тоже время участвует в каталитическом разложении НСО3-, которое сопровождается выделением СО2. Первая реакция протекает в альвеолах легких, вторая (обратная) - в клетках.

Некоторые другие комплексные соединения металлов, играющие определенную биологическую роль, приведены в таблице 2.

Таблица 2. Биологически важные комплексы металлов.

Металл Тип биомолекулы Лиганды Биологическая функция
Cu2+ Цитохромооксидаза, церулоплазмин и др. Азотистые основания Окисление, депонирование и транспорт меди
Mn2+ Аргиназа, декарбокси-лазы аминокислот, фосфотрансферазы и др. Фосфат, имидазол Декарбоксили-рование, перенос фосфатных групп
Mo2+ Нитрогеназа, нитрат-редуктаза, ксантин-оксидаза Не иденти-фицированы Восстановление N2 в NH3, окисление пуринов
Mg2+ Хлорофилл Порфирин Превращение световой энергии в энергию химичес-ких связей
Cr3+ Дрожжи Никотиновая кислота, амино-кислоты Участие в угле-водном обмене, усиление действия инсулина

Токсикологическая роль комплексообразования

Токсическое действие большинства тяжелых металлов (ртуть, свинец, таллий и др.) объясняется способностью ионов этих металлов образовывать прочные комплексы с белками, ферментами и амино-кислотами, В результате подавляется активность ферментов и происходит свертывание белков.

Например, ионы ртути Hg2+ образуют прочные комплексы с белками, имеющими в своем составе SH-группы. Таким образом, ртуть концентрируется в тканях и органах, богатых этими белками, а именно в почках, головном мозге, слизистой оболочке рта.

Свинец удерживается белками эритроцитов, затем поступает в плазму крови в виде комплексов с гамма-глобулином и, наконец, достигает почек, печени и других органов. Свинец также накапли-вается в костной ткани.

Некоторые агенты, способные образовывать прочные комплексы с ионами металлов, используются в качестве антидотов при бытовых и профессиональных отравлениях соединениями тяжелых металлов, а также при хронических интоксикациях, вызванных передозировкой лекарственных препаратов.

Так, внутривенное введение ЭДТА позволяет вывести из организма избыточные ионы Ca2+ в виде прочного комплекса, что снижает вероятность образования камней в почках и в желчном пузыре.

При отравлениях соединениями ртути, сурьмы и мышьяка внутривенно вводят димеркапрол (2, 3-димеркаптопропанол-1), кото-рый не только снижает токсическое действие этих элементов, но и выводит их из организма в виде комплексов:

Позднее в употребление была введена 2, 3-димеркаптоянтарная кислота, которую вводят перорально:

При отравлениях соединениями меди используют пеницилламин:

Комплекс меди с пеницилламином выводится вместе с мочой.

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2017-03-03; Просмотров: 1357; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.016 с.)
Главная | Случайная страница | Обратная связь