Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


РАЗДЕЛ Б. ГИДРОДИНАМИЧЕСКИЕ ПЕРЕДАЧИ



Общие понятия

Назначение и области применения гидродинамических передач. Принцип действия и классификация. Рабочие жидкости.

Методические указания.

Характеристики машин, между которыми передается механическая энергия, часто не соответствуют друг другу, в результате чего они работают неэкономично. Согласование этих характеристик достигается путем применения гидродинамических передач, в которых нет непосредственного контакта между ведущим и ведомым звеньями, вращающимися с различными угловыми скоростями. Вращательное движение в гидропередачах передается через промежуточную среду – рабочую жидкость.

Гидропередача представляет собой механизм, состоящий из двух предельно сближенных в одном корпусе лопастных систем – центробежного насоса и лопастной турбины, переносящих потоком жидкости энергию от двигателя к рабочей машине. Кинетическая связь между лопастными рабочими органами гидропередачи обеспечивает плавное изменение скорости вращения ведомого вала в зависимости от его нагрузки.

Гидропередачи разделяются на гидромуфты и гидротрансформаторы. Они используются в машиностроении и на транспорте: в тепловозах, автомобилях, приводах мощных вентиляторов и насосов, в судовых и буровых установках, в землеройных и дорожных машинах.

Гидродинамические муфты

Устройство и рабочий процесс гидромуфты. Основные параметры, уравнения и характеристики. Совместная работа гидромуфты с двигателем. Регулирование гидромуфт.

Гидродинамические трансформаторы

Устройство, классификация, рабочий процесс, основные параметры и уравнения. Потери энергии в гидротрансформаторе. Внешние характеристики гидротрансформаторов различных типов. Формулы подобия для гидротрансформаторов и их применение. Совместная работа гидротрансформаторов с двигателями. Комплексные гидротрансформаторы.

Часть III. ОБЪЕМНЫЕ НАСОСЫ,

ГИДРОПРИВОДЫ И ГИДРОПНЕВМОАВТОМАТИКА

РАЗДЕЛ А. ОБЪЕМНЫЕ НАСОСЫ

Общие положения

Объемные насосы, принцип действия, общие свойства и классификация, применение в гидроприводах и в системах гидроавтоматики.

Методические указания.

В объемном насосе подвижные рабочие органы – вытеснители (поршень, плунжер, пластина, зуб шестерни, винтовая поверхность) замыкают определенную порцию жидкости в рабочей камере и вытесняют ее сначала в камеру нагнетания, а затем – в напорный трубопровод. В объемном насосе вытеснители сообщают жидкости главным образом потенциальную энергию давления, а в лопастном насосе – кинетическую. Объемные насосы разделяют на две группы: 1) по-

 

 


ршневые (клапанные) и 2) роторные (бесклапанные). Такое разграничение произведено по признакам (свойствам): обратимости (первые необратимые, вторые обратимые); быстроходности (первые тихоходные, низкооборотные, вторые высокооборотные); равномерности подачи (первые отличаются большой неравномерностью, вторые обеспечивают более равномерную подачу); характеру перекачиваемых жидкостей (первые способные перекачивать любые жидкости, вторые лишь неагрессивные, чистые отфильтрованные и смазывающие жидкости).

Подача объемного насоса пропорциональна его размерам и скорости движения вытеснителей жидкости. Напор объемных насосов почти не связан ни с подачей, ни со скоростью движения вытеснителей жидкости. Необходимое давление в системе определяется полезной внешней нагрузкой (усилием, прилагаемым к вытеснителю) и гидравлическим сопротивлением системы. Наибольшее возможное давление, развиваемое насосом, ограничивается мощностью двигателя и механической прочностью корпуса и деталей насоса. Чем больше напор объемных насосов, тем больше утечка жидкости через уплотнения, тем ниже объемный коэффициент полезного действия. Напор, при котором объемный к.п.д. снижается до экономически допустимого предела, может считаться максимально допустимым.

Поршневые и плунжерные насосы

Устройство, области применения поршневых и плунжерных насосов. Индикаторная диаграмма. К.п.д. поршневых насосов. Графики подачи и способы ее выравнивания. Диафрагменные насосы. Поршневые компрессоры.

Методические указания.

Возвратно-поступательное движение поршня осуществляется при помощи кривошипно-шатунного механизма. Скорость поршня и подача насоса при этом получаются неравномерными: ход нагнетания чередуется с ходом всасывания, причем скорость поршня по длине его пути непрерывно меняется. Работу поршневого насоса можно весьма наглядно проследить по индикаторной диаграмме, т.е. по графическому изображению изменения давления в цилиндре насоса перед поршнем. Из этой диаграммы можно выяснить влияние воздушных колпаков на процессы всасывания и нагнетания, а также зависимость мгновенного максимума давления и минимума давления, обусловливающих в первом случае прочность насоса, во втором – возможность появления кавитации, от числа ходов в минуту. По индикаторной диаграмме можно судить об исправной работе всасывающего и нагнетательного клапанов насоса и выявить различные неисправности его работы.

Геометрическая высота всасывания hв (рис.5) всегда должна быть меньше высоты атмосферного давления – . При определении hв необходимо учитывать не только давление насыщенных паров рп перекачиваемой жидкости, гидравлические сопротивления всасывающего трубопровода hп.в, но и потери напора hин на преодоление сил инерции:

. (26)

Гидравлические потери во всасывающем трубопроводе (на трение по длине и местные) определяются ранее указанными способами. Инерционный напор hин появляется вследствие неустановившегося движения жидкости во всасывающем трубопроводе, вызываемого неравномерным движением поршня в цилиндре поршневого насоса. Потери напора на преодоление сил инерции определяют по формуле

, (27)

 


где g – ускорение силы тяжести; а – ускорение поршня, зависящее от его положения в цилиндре, т. е. от угла j поворота кривошипа.

Ускорение поршня определяют по формуле

, (28)

где w – угловая скорость кривошипа.

Если в формулу (26) подставить максимальное значение инерционного напора hин, то и hп.в отбрасываются, так как скорость течения жидкости в этом случае во всасывающем трубопроводе равна нулю. Во всасывающем трубопроводе центробежного насоса жидкость течет при установившемся движении и силы инерции в ней не проявляются.

Роторные насосы

Классификация роторных насосов, общие свойства и области применения. Устройство и особенности роторных насосов различных типов: а) роторно-поршневых; б) пластинчатых (шиберных); в) шестеренных; г) винтовых. Определение рабочих объемов. Подача и ее равномерность. Характеристики насосов. Регулирование подачи. Работа насоса на трубопровод.

Методические указания.

Более равномерную подачу жидкости (в отличие от одноцилиндровых поршневых насосов) можно получить применением многоцилиндровых роторно-поршневых машин, объединенных в общий блок. Вытеснение жидкости в таких насосах производится последовательно каждым поршнем. Цилиндры этих насосов могут быть расположены радиально и аксиально по отношению к оси блока. Они существенно отличаются от поршневых насосов (бесклапанность, обратимость, высокооборотность, большая равномерность подачи, возможность ее регулирования). Все это обусловило широкое применение роторнопоршневых насосов в объемных гидроприводах.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2017-03-08; Просмотров: 735; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.013 с.)
Главная | Случайная страница | Обратная связь