Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Пуск двигателя постоянного тока. Пусковые характеристики ⇐ ПредыдущаяСтр 7 из 7
В соответствии с уравнением равновесия моментов Mэм = M0 + Mн + J(dω /dt) условием пуска двигателя является неравенство Мп > Мст. Если это условие выполняется, то при включении двигателя в сеть ротор приходит в движение и разгоняется до установившегося режима. Ввиду того, что ротор обладает моментом инерции, разгоняется он не мгновенно – нарастание скорости происходит по закону, близкому к экспоненте. №22. Частота вращения двигателя постоянного тока. Способы регулирования частоты вращения. Регулирование частоты вращения двигателей независимого и параллельного возбуждения.Хорошие регулировочные свойства двигателей постоянного тока — одна из основных причин их применения в современном электроприводе, несмотря на существенные недостатки, обусловленные наличием у них щеточно-коллекторного узла. Лучшие регулировочные свойства у двигателей независимого и параллельного возбуждения. Регулирование частоты вращения изменением подводимого к обмотке якоря напряжения. Как следует из n=(U-Ia*суммаr)/(ce*Ф), с изменением напряжения U частота вращения изменяется. Так как превышение номинального напряжения недопустимо, то этот способ позволяет изменять частоты вращения только в сторону уменьшения от номинальной. В двигателях мощностью до 100—120 Вт напряжение, подводимое к обмотке якоря, можно изменять посредством потенциометра потери в котором вследствие небольшой передаваемой мощности невелики. Если питание двигателя осуществляется через автономные выпрямители (В1 — в цепи обмотки якоря и В2— в цепи обмотки возбуждения ОВ), то регулировать частоту вращения можно посредством автотрансформатора AT, на выход которого включен выпрямитель В1. При этом напряжение возбуждения остается неизменным. Этот способ регулирования частоты вращения успешно применяется при мощности двигателя до 500—600 Вт. Регулирование частоты вращения изменением добавочного сопротивления в цепи обмотки якоря. Этот способ регулирования также позволяет изменять частоту вращения только в сторону уменьшения от номинальной и осуществляется посредством реостата Rдоб (см. рис. 6.20). Недостатки рассматриваемого способа: значительные потери на нагрев реостата (Ia^2*Rдоб) — с изменением сопротивления доб меняется жесткость механических характеристик двигателя (см. рис. 6.22, a). Регулирование частоты вращения изменением магнитного потока возбуждения. Этот способ регулирования весьма экономичен, так как изменение магнитного потока осуществляется реостатом в цепи обмотки возбуждения, ток в которой у рассматриваемых двигателей в несколько раз меньше тока в цепи обмотки якоря. Способ позволяет изменять частоту вращения в сторону увеличения от номинальной. При увеличении сопротивления реостата rрег (см. рис. 6.20) уменьшается ток в обмотке возбуждения Iв, а следовательно, и магнитный поток Ф, что вызывает возрастание частоты вращения якоря двигателя. вращения может превышать максимальное значение. Недостаток данного способа регулирования состоит в том, что при изменении потока Ф в значительной степени меняется жесткость механических характеристик двигателя (см. рис. 6.22, б). Импульсное регулирование частоты вращения. Цепь обмотки якоря двигателя независимого возбуждения периодически подключается к источнику напряжения ключом К. При замыкании цепи якоря на время t1 к обмотке якоря подводится напряжение U=Uном, ток нарастает до значения Imax (рис. 6.25, б). При размыкании ключа ток уменьшается, достигая значения Imin, замыкаясь через диод VD. При следующем замыкании ключа К. ток в якоре вновь достигает значения Imax и т. д. Таким образом, к цепи обмотки якоря подводятся импульсы напряжения, амплитудное значение которых равно напряжению U источника. Среднее напряжение, прикладываемое к двигателю, В, Uср=Ut1/T= U, где t1—длительность импульса напряжения; Т—время между двумя следующими друг за другом импульсам напряжения (рис. 6.25, б); =t1/T— коэффициент управления. Ток в обмотке якоря определяется средним значение Iср=0, 5(Imax+Imin). Частота вращения двигателя при импульсном регулировании n=( U-Ia*суммаr)/(ce*Ф). Импульсное регулирование обеспечивает изменение частоты вращения лишь в сторону уменьшения от номинальной. Для снижения пульсаций тока в цепь якоря включают дроссель L. Частота работы ключа составляет 200—400 Гц. На рис. 6.25, в показана одна из возможных схем импульсного регулирования напряжения, где в качеств ключа используют тиристор VS. Включается тиристор (что соответствует замыканию ключа) подачей кратковременного импульса от генератора импульсов ГИ на управляющий электрод УЭ. Цепь из дросселя L1 и конденсатора С, шунтирующая тиристор, служит для выключения последнего в интервале между двумя управляющими импульсами. При включении тиристора конденсатор С перезаряжается по контуру С—VS—L1—С и к тиристору прикладывается напряжение, обратное напряжению сети. Время открытого состояния тиристора (с) определяется параметрами цепи L1С: t= *sqrt(L1C), где L1 —индуктивность дросселя, Гн; С—емкость конденсатора, Ф. Среднее значение напряжения Uср, подводимого к обмотке якоря, регулируется изменением частоты следования управляющих импульсов. Частота вращения Д с постоянными магнитами регулируется изменением напряжения на обмотке якоря (реостатом Rдоб или импульсным методом) только в сторону уменьшения от номинального значения. Для изменения направления вращения якоря (реверса) Д необходимо изменить направление тока в обмотке якоря либо в ОВ. При одновременном изменении тока в обеих обмотках якорь не изменяет направления вращения. В Д с постоянными магнитами реверс осуществляется изменением полярности клемм обмотки якоря. №23. Законы электромеханики Первый Закон Электромеханическое преобразование энергии не может осуществляться с коэффициентом полезного действия 100%. Электромеханические преобразователи – сложные преобразователи, в которых преобразование электрической энергии (Рэл) в механическую ( Рмех) и обратно происходит с обязательным выделением тепловой энергии ( Рт). В каждой машине имеются потери в стали, обмотках, механические потери. По этой причине КПД всегда меньше 100%. Для электрической машины КПД можно определить как отношение полезной мощности к мощности, подводимой к электрической машине. Для генератора Для двигателя Второй закон Все электрические машины обратимы, ᴛ.ᴇ. одна и та же машина может работать в режимах двигателя и генератора. Обратимость электрической машины – основное отличие электромеханического преобразователя (ЭП) от других преобразователей. Работа в режимах двигателя и генератора – важнейшее преимущество ЭП, обеспечившее широкое применение электрических машин в промышленности. В режиме генератора активная мощность забирается с вала машины и преобразуется в электрическую, в режиме двигателя – поступает из сети и преобразуется в механическую. При этом реактивная мощность, идущая на создание магнитного поля, может ʼ ʼ поступатьʼ ʼ или ʼ ʼ отдаватьсяʼ ʼ в сеть независимо от режима работы ЭП. В трансформаторах энергия магнитного поля концентрируется, в основном, в магнитопроводе, а в генераторах и двигателях – в воздушном зазоре – пространстве между ротором и статором. Можно утверждать, что там и происходит электромеханическое преобразование энергии. Третий закон Электромеханическое преобразование энергии осуществляется полями, неподвижными относительно друг друга. Результирующее поле в машине создается полями статора и ротора. Ротор может вращаться с той же скоростью, что и поле, или с другой скоростью, однако поля ротора и статора в установившемся режиме неподвижны относительно друг друга. Угловая скорость ротора Угловая скорость поля ротора относительно ротора , угловая скорость поля ротора относительно неподвижного статора , где - угловая скорость поля статора, - угловая скорость ротора. Электромагнитный момент , где Рэ – электромагнитная мощность или мощность, сконцентрированная в магнитном поле в воздушном зазоре машины. Поля, перемещающиеся относительно друг друга, не создают электромагнитного момента͵ а создают только поток тепловой энергии. №24 Правило выбора эл дв Шаг 1-й: Узнать характеристики нагрузки. Применительно к однофазным электродвигателям, нагрузки разделяются на 3 категории: стабильный момент силы, внезапно изменяющийся момент силы и момент силы, который изменяется постепенно, через определённые промежутки времени.
Шаг 2-й. Рассмотрим мощность. Главное правило выбора мотора по мощности: нужно выбирать электродвигатель именно той мощности, какой нужно и стараться избегать её превышения или занижения.
Шаг 3-й. Запуск. Также необходимо учитывать силу инерции, особенно вовремя процедуры пуска.
Шаг 4: Регулировка в течение цикла работы. Циклом работы называется совокупность пошаговых операций, выполняемых мотором, в которые входят старт, работа в обычном режиме и остановка.
Шаг 5-й: Последний критерий выбора мотора, гипоксия.
Популярное:
|
Последнее изменение этой страницы: 2017-03-03; Просмотров: 1490; Нарушение авторского права страницы