Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Роль и значение статистических методов в управлении качеством



Стандарт ИСО утверждает, что правильное применение статистических методов имеет важное значение для проведения управляющих воздействий при анализе рынка, для проектирования продукции, для прогнозирования долговечности и срока службы, для изучения средств регулирования процессов, для определения уровней качества в планах выборочного контроля, при оценке эксплуатационных характеристик для улучшения качества процессов, при оценке безопасности и анализе рисков.

Используя статистические методы, можно своевременно выявлять проблемы, связанные с качеством (обнаружить нарушение процесса до того, как произошел выпуск дефектных изделий). В значительной мере статистические методы позволяют установить и причины нарушения.

Потребность в статистических методах возникает, прежде всего, в связи с необходимостью минимизации вариабельности (изменчивости) процессов.

Под вариабельностью понимается отклонение различных фактов от заданных значений. Не выявленная своевременно вариабельность может представлять собой смертельную опасность, как для производства, так и для продукции и предприятия в целом.

Системный подход к процедуре принятия решения, основанный на теории вариабельности, называют статистическим мышлением. В соответствии с формулировкой американского общества качество статистического мышления основывается на трех фундаментальных принципах:

1) любая работа осуществляется в системе взаимосвязанных процессов;

2) во всех процессах есть вариации;

3) понимание и снижение вариации – это ключ к успеху.

Деминг говорил «Если бы мне пришлось выразить мое послание менеджмент всего в нескольких словах, я бы сказал, что вся суть состоит в уменьшении вариации».

Причины вариации любых процессов могут быть разделены на две группы.

Первая группа – это общие причины, связанные с производственной системой (оборудование, здания, сырье, персонал) соответствуют вариабельность нельзя изменить без изменения системы. Любые действия рядовых сотрудников – исполнителей в этой ситуации, скорее всего, только ухудшает положение. Вмешательство в систему почти всегда требует действий со стороны руководства – высшего менеджмента.

Вторая группа – это специальные причины, связанные с ошибками оператора, сбоями настройки, нарушения режима и др. Ликвидацией этих причин занимается персонал, непосредственно участвующий в процессе. Это неслучайные причины – износ инструмента, ослабления креплений, изменение температуры охлаждающей жидкости, нарушение технологического режима. Такие причины должны быть изучены и могут быть устранены при настройке процесса, что и обеспечивает его стабильность.

Основные функции статистических методов в УК

- Познавательная информационная функция

- Прогностическая функция

- Оценочная функция

- Аналитическая функция

Ложная и необъявленная тревога

В данном случае речь идет о статистических ошибках. Где в результате их возникновения может быть обвялено ложная тревога и на оборот не обнаружения этих ошибок может перевести к необъявленной тревоге.

В целом ошибки наблюдения – это расхождения между статистическим наблюдением и действительными значениями изучаемых величин.

при проведении статистических наблюдений выделяют два вида ошибки

1) ошибки регистрации

2) ошибки репрезентативности

Ошибки регистрации – возникают из-за неправильного установления фактов в процессе наблюдения, либо ошибочной их записи, либо и того и другого.

Ошибки регистрации бывают случайными и систематическими, преднамеренными и непреднамеренными.

Случайные ошибки – это те ошибки, которые возникают под действием случайных факторов.

Такие ошибки могут быть направлены как в сторону преувеличения, так и в сторону преуменьшения, а при достаточно большом числе наблюдения это ошибки взаимно погашаются под действием закона больших чисел.

Систематические ошибки – возникают по определенным постоянным причинам, действующим в одном и том же направлении, т.е. в сторону преувеличения или преуменьшения размера данных, что приводит к серьезным искажениям общих результатов статистического наблюдения.

Преднамеренные ошибки – это ошибки причиной которых является сознательное искажение данных.

Непреднамеренные ошибки – это ошибки, которые носят случаный, неумышленный характер, например, неисправности измерительных приборов.

Ошибки репрезентативности – такие ошибки возникают при не сплошном наблюдении. Они, так же как и ошибки регистрации бывают случайными и систематическими

Случайные ошибки репрезентативности возникают в силу того, что выборочная совокупность отобранных на основе принципа случайности единиц наблюдения отражает не всю совокупность, величина этой ошибки может быть оценена.

Систематические ошибки возникают вследствие нарушения принципа случайности отбора единиц изучаемой совокупности, которые должны быть подвергнуты наблюдению.

Размеры этих ошибок, как правило, не поддаются количественному измерению. Проверка достоверности данных статистического наблюдения может быть реализована посредством осуществления контроля.

Классификация отклонений параметров качества изделий и методов контроля

В зависимости от источника и способа получения информации методы оценки качества классифицируются на объективные, эвристические, статистические и комбинированные (смешанные). Объективные методы делят на измерительный, регистрационный, расчетный и опытной эксплуатации. Эвристические методы включают в себя органолептический, экспертный и социологические методы.

Применение статистических методов — один из наиболее эффективных путей разработки новых технологий и контроля качества процессов.

 

Вопрос 2. Надежность систем. Оценка вероятности отказов и вероятности безотказной работы системы при различных схемах соединения входящих в нее элементов.

 

Надежность систем

Надежность системы – это свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонтов, хранения и транспортировки.

Показатель надежности количественно характеризует одно или несколько свойств, составляющих надежность объекта.

Показатель надежности может иметь размерность (например, наработка на отказ) или не иметь (например, вероятность безотказной работы).

Показатели надежности могут быть единичными и комплексными. Единичный показатель надежности характеризует одно из свойств, а комплексныйнесколько свойств, составляющих надежность объекта.

Различают следующие показатели надежности:

- исправность

- работоспособность

- безотказность

- долговечность

- ремонтопригодность

- восстанавливаемость

- Сохраняемость и др.

Причины изготовления ненадежной продукции:

1) отсутствие регулярной проверки соответствия стандартам;

2) ошибки в применении материалов и неправильный контроль материалов в ходе производства;

3) неправильный учет и отчетность по контролю, включая информацию об усовершенствовании технологии;

4) не отвечающие стандартам схемы выборочного контроля;

5) отсутствие испытаний материалов на их соответствие;

6) не выполнение стандартов по приемочным испытаниям;

7) отсутствие инструктивных материалов и указаний по проведению контроля;

8) не регулярное использование отчетов по контролю для усовершенствования технологического процесса.

Оценка вероятность отказов и вероятность безотказной работы любой системы зависит от схемы соединения входящих в нее элементов.

Различают три схемы соединения:

1) последовательное соединение элементов

 

       
 
   
 

 


Последовательная система соединения элементов надежна тогда, когда надежны все элементы и чем больше количество элементов в системе, тем ниже ее надежность.

Надежность последовательно соединенных элементов можно найти по формуле:

(1)

 

где р – это степень надежности элемента.

п – это число элементов.

Вероятность отказа системы последовательно соединенных элементов находится по формуле:

(2)

 

2) параллельное соединение элементов

 
 

 


Параллельное соединение элементов увеличивает надежность системы.

Надежность системы при параллельном соединении элементов определяется по формуле:

(3)

 

где q – это степень ненадежности элемента

вероятность отказа при параллельном соединении элементов определяется по формуле:

(4)

 

3) Комбинированные соединения.

Различают две Схемы комбинированных соединений элементов.

Схема (1) – отражает надежность системы при параллельном соединении двух подсистем, когда каждая из них состоит из двух последовательно соединенных элементов.

Схема (2) – отражает надежность системы при последовательном соединении двух подсистем, когда каждая из них состоит из двух параллельно соединенных элементов

 


1)

 

Надежность системы при параллельном соединении двух подсистем, когда каждая из них состоит из двух последовательно соединенных элементов определяется по формуле:

(5)

 

Надежность системы при последовательном соединении двух подсистем, когда каждая из них состоит из двух параллельно соединенных элементов определяется по формуле:

(6)

 

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2017-03-03; Просмотров: 1068; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.033 с.)
Главная | Случайная страница | Обратная связь