Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


В21. Матричный метод исследований кинематики пространственных устройств. Прямая и обратная задача кинематики.



В кинематике манипулятора различают 2е задачи:

1. Прямая задача кинематики состоит в определении по известным обобщенным координатам манипуляторов положения некоторого его звена;

2 Обратная задача кинематики представляет собой задачу отыскания обобщенных координат манипулятора по известным значениям положения в пространстве раб. органа манипулятора или его звеньев и сводиться к решению уравнения .

Матричный метод исследований кинематики пространственных устройств.

Опишем два вида матриц: матрицы М, определяющие отношение между системами координат соседних звеньев; матрицы Т, определяющие положение и ориентацию каждого звена механизма в неподвижной или базовой системе координат. Воспользуемся однородными координатами трехмерного проективного пространства РR3, в которых движение евклидова пространства R3 можно представить линейным преобразованием где Мij - матрица 4x4 вида . Это преобразование эквивалентно преобразованию в эвклидовом пространстве где . То есть преобразованию, которое включает поворот, определяемый матрицей Uij размерностью 3х3, и параллельный перенос, задаваемый вектором размерностью 3. В однородном пространстве положение точки будут определять не три x, y и z, а четыре величины x', y', z' и t', которые удовлетворяют следующим соотношениям: x = x'/t', y = y'/t', z = z'/t'.

Обычно принимают t'=1. У матрицы поворота Uij элементами uij являются направляющие косинусы углов между новой осью i и старой осью j. Вектор - трехмерный вектор, определяющий положение начала новой системы координат i в старой системе j. Выбор расположения осей должен соответствовать решаемой задаче. При решении задачи о положениях необходимо: в прямой задаче определить положение выходного звена как функцию перемещений в приводах, в обратной - заданное положение выходного звена представить как функцию перемещений в приводах. Выбор расположения и ориентации локальных систем координат должен обеспечивать выполнение этих задач.

В прямой задаче необходимо определить положение схвата манипулятора и связанной с ним системы координат Mxnynzn по отношению к неподвижной или базовой системе координат Kx0y0z0. Это осуществляется последовательными переходами из системы координат звена i в систему координат звена i-1. Согласно принятому методу, каждый переход включает в себя последовательность четырех движений: двух поворотов и двух параллельных переносов, осуществляемых в указанной последовательности:

· поворот i -ой системы вокруг оси xi на угол -qi до параллельности осей zi и zi-1 (положительное направление поворота при наблюдении с конца вектора xi против часовой стрелки);

· перенос вдоль оси xi на величину -ai до совмещения начала системы координат Oi с точкой пересечения осей xi и zi-1 (отсчет по оси xi от точки пересечения оси xi и оси zi-1 );

· перенос вдоль оси zi-1 на величину -si, после которого начало системы координат Oi оказывается в начале координат Oi-1 системы (i-1) (отсчитывается по оси zi-1 от ее начала координат Oi-1 до точки ее пересечения с осью xi );

· поворот вокруг оси zi-1 на угол -ji, до тех пор пока ось xi не станет параллельной оси xi-1 (положительное направление поворота при наблюдении с конца вектора zi-1 против часовой стрелки).

Необходимо отметить, что знак угла поворота не имеет значения, так как в матрицах перехода используются направляющие косинусы (четные функции). Целесообразно рассматривать угол, обеспечивающий кратчайший поворот оси старой системы i до совмещения (параллельности) с соответствующей осью новой ( i-1). Перемещения начала координат определяются как координаты начала старой системы Oi в новой Oi-1.

В манипуляторах обычно используются одноподвижные кинематические пары или вращательные, или поступательные. Оба относительных движения как вращательное, так и поступательное, реализуются в цилиндрических парах. Поэтому при общем представлении механизма используются цилиндрические пары.

Матрицы перехода их системы Oi в систему Oi-1 можно записать так: , где

- матрица поворота вокруг оси xiна угол -qi,
- матрица переноса вдоль оси xi на -ai,
- матрица переноса вдоль оси zi-1 на -si,
- матрица поворота вокруг оси zi-1 на угол -ji.

В этих матрицах переменные si и ji соответствуют относительным перемещениям звеньев в кинематических парах и являются обобщенными координатами манипулятора, определяющими конфигурацию механизма в рассматриваемом положении. Переменные ai и qi определяются конструктивным исполнением звеньев манипулятора, в процессе движения они остаются неизменными. Положение некоторой произвольной точки М в системе координат звена i определяется вектором rMi, а в системе координат звена (i-1) - вектором rMi-1. Эти радиусы связаны между собой через матрицу преобразования координат Мi следующим уравнением: , где


Поделиться:



Популярное:

Последнее изменение этой страницы: 2017-03-11; Просмотров: 1883; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.014 с.)
Главная | Случайная страница | Обратная связь