![]() |
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
В21. Матричный метод исследований кинематики пространственных устройств. Прямая и обратная задача кинематики.Стр 1 из 4Следующая ⇒
В кинематике манипулятора различают 2е задачи: 1. Прямая задача кинематики состоит в определении по известным обобщенным координатам манипуляторов положения некоторого его звена; 2 Обратная задача кинематики представляет собой задачу отыскания обобщенных координат манипулятора по известным значениям положения в пространстве раб. органа манипулятора или его звеньев и сводиться к решению уравнения Матричный метод исследований кинематики пространственных устройств. Опишем два вида матриц: матрицы М, определяющие отношение между системами координат соседних звеньев; матрицы Т, определяющие положение и ориентацию каждого звена механизма в неподвижной или базовой системе координат. Воспользуемся однородными координатами трехмерного проективного пространства РR3, в которых движение евклидова пространства R3 можно представить линейным преобразованием Обычно принимают t'=1. У матрицы поворота Uij элементами uij являются направляющие косинусы углов между новой осью i и старой осью j. Вектор В прямой задаче необходимо определить положение схвата манипулятора и связанной с ним системы координат Mxnynzn по отношению к неподвижной или базовой системе координат Kx0y0z0. Это осуществляется последовательными переходами из системы координат звена i в систему координат звена i-1. Согласно принятому методу, каждый переход включает в себя последовательность четырех движений: двух поворотов и двух параллельных переносов, осуществляемых в указанной последовательности: · поворот i -ой системы вокруг оси xi на угол -qi до параллельности осей zi и zi-1 (положительное направление поворота при наблюдении с конца вектора xi против часовой стрелки); · перенос вдоль оси xi на величину -ai до совмещения начала системы координат Oi с точкой пересечения осей xi и zi-1 (отсчет по оси xi от точки пересечения оси xi и оси zi-1 ); · перенос вдоль оси zi-1 на величину -si, после которого начало системы координат Oi оказывается в начале координат Oi-1 системы (i-1) (отсчитывается по оси zi-1 от ее начала координат Oi-1 до точки ее пересечения с осью xi ); · поворот вокруг оси zi-1 на угол -ji, до тех пор пока ось xi не станет параллельной оси xi-1 (положительное направление поворота при наблюдении с конца вектора zi-1 против часовой стрелки). Необходимо отметить, что знак угла поворота не имеет значения, так как в матрицах перехода используются направляющие косинусы (четные функции). Целесообразно рассматривать угол, обеспечивающий кратчайший поворот оси старой системы i до совмещения (параллельности) с соответствующей осью новой ( i-1). Перемещения начала координат определяются как координаты начала старой системы Oi в новой Oi-1. В манипуляторах обычно используются одноподвижные кинематические пары или вращательные, или поступательные. Оба относительных движения как вращательное, так и поступательное, реализуются в цилиндрических парах. Поэтому при общем представлении механизма используются цилиндрические пары. Матрицы перехода их системы Oi в систему Oi-1 можно записать так:
В этих матрицах переменные si и ji соответствуют относительным перемещениям звеньев в кинематических парах и являются обобщенными координатами манипулятора, определяющими конфигурацию механизма в рассматриваемом положении. Переменные ai и qi определяются конструктивным исполнением звеньев манипулятора, в процессе движения они остаются неизменными. Положение некоторой произвольной точки М в системе координат звена i определяется вектором rMi, а в системе координат звена (i-1) - вектором rMi-1. Эти радиусы связаны между собой через матрицу преобразования координат Мi следующим уравнением: Популярное:
|
Последнее изменение этой страницы: 2017-03-11; Просмотров: 1883; Нарушение авторского права страницы