Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Определение биологии как науки. Связь биологии с другими науками. Значение биологии для медицины.



Определение биологии как науки. Связь биологии с другими науками. Значение биологии для медицины.

Биология - наука о жизни. Она изучает жизнь как особую форму движения материи, законы ее существования и развития. Термин Б. предложен Ламарков в 1802 г. Предметов изучения биологии являются живые организмы, их строение, функции, их природные сообщества.

Биология лежит в основе таких наук, как медицина, экология, генетика, селекция, ботаника, зоология, анатомия, физиология, микробиология, эмбриология и др. Биология совместно с другими науками образовала такие науки, как биофизика, биохимия, бионика, геоботаника, зоогеография.

«Медицина, взятая в плане теории- это прежде всего общая биология», - писал Давыдовский. Теоретические достижения биологии широко применяются в медицине. Именно успехи и открытия в биологии определяют современный уровень медицинской науки. Так данные генетики позволили разрабатывать методы ранней диагностики, лечения и профилактики наследственных болезней человека. Селекция микроорганизмов позволяет получать ферменты, витамины, гормоны, необходимые для лечения ряда заболеваний. Развитие генной инженерии открывает широкие перспективы для производства биологически активных соединений и лекарственных веществ.

Определение понятия «жизнь» на современном этапе науки. Фундаментальные свойства живого. Химический состав клетки.

Жизнь - макромолекулярная открытая система, которой свойственна иерархическая организация, способность к самовоспроизведению, обмен веществ, тонко регулируемый поток энергии. Жизнь, согласно этому определению, представляет собой ядро упорядоченности, распространяющееся в менее упорядоченной Вселенной.

Стр.9 слюсарев

самообновление. Связано с потоком вещества и энергии. Основу обмена веществ составляют сбалансированные и четко взаимосвязанные процессы ассимиляции (анаболизм, синтез, образование новых веществ) и диссимиляции (катаболизм, распад). В результате ассимиляции происходят обновление структур организма и образование новых его частей (клеток, тканей, частей органов). Диссимиляция определяет расщепление органических соединений, обеспечивает клетку пластическим веществом и энергией. Для образования нового нужен постоянный приток необходимых веществ извне, а в процессе жизнедеятельности (и диссимиляции, в частности) образуются продукты, которые нужно вывести во внешнюю среду;

с амовоспроизведение. Обеспечивает преемственность между сменяющимися генерациями биологических систем. Это свойство связано с потоками информации, заложенной в структуре нуклеиновых кислот. В связи с этим живые структуры постоянно воспроизводятся и обновляются, не теряя при этом сходства с предыдущими поколениями (несмотря на непрерывное обновление вещества). Нуклеиновые кислоты способны хранить, передавать и воспроизводить наследственную информацию, а также реализовывать ее через синтез белков. Информация, хранимая на ДНК, переносится на молекулу белка с помощью молекул РНК;

саморегуляция . Базируется на совокупности потоков вещества, энергии и информации через живой организм;

Саморегуляция в биологии — свойство биологичес­ких систем автоматически устанавливать и поддерживать на определенном, относительно постоянном уровне те или иные физиологические и другие биологические показате­ли.

раздражимость . Связана с передачей информации извне в любую биологическую систему и отражает реакцию этой системы на внешний раздражитель. Благодаря раздражимости живые организмы способны избирательно реагировать на условия внешней среды и извлекать из нее только необходимое для своего существования. С раздражимостью связана саморегуляция живых систем по принципу обратной связи: продукты жизнедеятельности способны оказывать тормозящее или стимулирующее воздействие на те ферменты, которые стояли в начале длинной цепи химических реакций;

поддержание гомеостаза (от гр. homoios — «подобный, одинаковый» и stasis — «неподвижность, состояние») — относительного динамического постоянства внутренней среды организма, физико-химических параметров существования системы;

структурная организация — определенная упорядоченность, стройность живой системы. Обнаруживается при исследовании не только отдельных живых организмом, но и их совокупностей в связи с окружающей средой — биогеоценозов;

адаптация — способность живого организма постоянно приспосабливаться к изменяющимся условиям существования в окружающей среде. В ее основе лежат раздражимость и характерные для нее адекватные ответные реакции;

репродукция (воспроизведение). Так как жизнь существует в виде отдельных (дискретных) живых системы (например, клеток), а существование каждой такой системы строго ограничено во времени, поддержание жизни на Земле связано с репродукцией живых систем. На молекулярном уровне воспроизведение осуществляется благодаря матричному синтезу, новые молекулы образуются по программе, заложенной в структуре (матрице) ранее существовавших молекул;

наследственность. Обеспечивает преемственность между поколениями организмов (на основе потоков информации). Тесно связана с ауторепродукцией жизни на молекулярном, субклеточном и клеточном уровнях. Благодаря наследственности из поколения в поколение передаются признаки, которые обеспечивают приспособление к среде обитания;

изменчивость — свойство, противоположное наследственности. За счет изменчивости живая система приобретает признаки, ранее ей несвойственные. В первую очередь изменчивость связана с ошибками при репродукции: изменения в структуре нуклеиновых кислот приводят к появлению новой наследственной информации. Появляются новые признаки и свойства. Если они полезны для организма в данной среде обитания, то они подхватываются и закрепляются естественным отбором. Создаются новые формы и виды. Таким образом, изменчивость создает предпосылки для видообразования и эволюции;

индивидуальное развитие (процесс онтогенеза) — воплощение исходной генетической информации, заложенной в структуре молекул ДНК (т. е. в генотипе), в рабочие структуры организма. В ходе этого процесса проявляется такое свойство, как способность к росту, что выражается в увеличении массы тела и его размеров. Этот процесс базируется на репродукции молекул, размножении, росте и дифференцировке клеток и других структур и др.;

филогенетическое развитие (закономерности его установлены Ч. Р. Дарвином). Базируется на прогрессивном размножении, наследственности, борьбе за существование и отборе.

В результате эволюции появилось, огромное количество видов. Прогрессивная эволюция прошла ряд ступеней. Это доклеточные, одноклеточные и многоклеточные организмы

вплоть до человека. При этом онтогенез человека повторяет филогенез (т. е. индивидуальное развитие проходит те же этапы, что и эволюционный процесс);

дискретность (прерывистость) и в то же время целостность . Жизнь представлена совокупностью отдельных организмов, или особей. Каждый организм, в свою очередь, также

дискретен, поскольку состоит из совокупности органов, тканей и клеток. Каждая клетка состоит из органелл, но в то же время автономна. Наследственная информация осуществляется генами, но ни один ген в отдельности не может определять

развитие того или иного признака.

Такие элементы, как C, O, H, N, S, P входят в состав органических соединений.

 

К макроэлементам относят кислород (65—75 %), углерод (15—18 %), водород (8—10 %), азот (2, 0—3, 0 %), калий (0, 15—0, 4 %), сера (0, 15—0, 2 %), фосфор (0, 2—1, 0 %), хлор (0, 05—0, 1 %), магний (0, 02—0, 03 %), натрий (0, 02—0, 03 %), кальций (0, 04—2, 00 %).

микроэлементам, составляющим от 0, 001 % до 0, 000001 % массы тела живых существ, относят ванадий, германий, йод (входит в состав тироксина, гормона щитовидной железы), кобальт (витамин В12), марганец, никель, рутений, селен, фтор (зубная эмаль), медь, хром, цинк.

 

Доклеточный уровень организации живой материи. Вирусы. Роль вирусов в изменчивости и их применение в генной инженерии и терапии. Опыты Х.Френкель-Конрада и А.Херши и М.Чейз с использованием двух типов вирусов.

Стр 12 сл

Доклеточный (или молекулярный, или молекулярно-генетический) уровень организации жив.материи: Начальный уровень организации живого. Предмет исследования - молекулы нуклеиновых кислот, белков, углеводов, липидов и других биологических молекул, т.е. молекул, находящихся в клетке.

С этого уровня начинаются разнообразные процессы жизнедеятельности организма: обмен веществ и превращение энергии, передача наследственной информации и др.

 

Вирусы-относятся к неклеточным формам жизни. Проявляют жизнь только в чьей-либо клетке (в стадии внутриклеточного паразитизма). Их существование было доказано Ивановским в 1892 г.

P.S. Ивановский и Половцев первыми в мире высказали предположение, что болезнь табака, описанная в 1886 году A.D.Mayer в Голландии под названием мозаичной, представляет не одно, а два совершенно различных заболевания одного и того же растения. Одно из них - рябуха, возбудителем которой является грибок, а другое - неизвестного происхождения.
Конец XIX века ознаменовался крупными достижениями в микробиологии, и, естественно, Ивановский решил узнать, не вызывает ли табачную мозаику какая-нибудь бактерия. Он просмотрел под оптическим микроскопом (электронных тогда еще не было) множество больных листьев, но тщетно - никаких признаков бактерий обнаружить не удалось. " А может быть, они такие маленькие, что их нельзя увидеть? " - подумал ученый. Если это так, то они должны пройти через фильтры, которые задерживают на своей поверхности обычные бактерии. Подобные фильтры в то время уже имелись.

Мелко растертый лист больного табака Ивановский помещал в жидкость, которую затем фильтровал. Бактерии при этом задерживались фильтром, а прошедшая фильтрацию жидкость должна была быть стерильной и не способной заразить здоровое растение при попадании на него. Но она заражала! В этом суть открытия Ивановского (как просто всё гениальное! ).

Здесь сказывается различие в размерах. Вирусы мельче бактерий приблизительно в 100 раз, поэтому они свободно проходили сквозь все фильтры и заражали здоровые растения, попадая на них вместе с отфильтрованной жидкостью. Бактерии к тому же отличаются способностью размножаться в искусственно созданных питательных средах, а открытые Ивановским вирусы этого не делали. " Значит, это нечто новое", - решил ученый. На дворе стоял 1892 год.

 

 

Зрелые частицы вирусов – вирионы или вироспоры- состоят из белковой оболочки и нуклеокапсида, представлен нуклеиновой кислотой. Жизн.цикл: вироспора-прикрепление к клетке-внедрение в нее-латентная стадия-образование нового поколения-выход вироспор.

 

 

Типы взаимодействия вируса с клеткой

Различают три типа взаимодействия вируса с клеткой: продуктивный, абортивный и интегративный.

Продуктивный тип — завершается образованием нового поколения вирионов и гибелью (лизисом) зараженных клеток (цитолитическая форма). Некоторые вирусы выходят из клеток, не разрушая их (нецитолитическая форма).

Абортивный тип — не завершается образованием новых вирионов, поскольку инфекционный процесс в клетке прерывается на одном из этапов.

Интегративный тип, или вирогения — характеризуется встраиванием (интеграцией) вирусной ДНК в виде провируса в хромосому клетки и их совместным сосуществованием (совместная репликация)

 

http: //biofile.ru/bio/5222.html

+

Вирусы открыты Д.И.Ивановским (1892 г., вирус табачной мозаики).

Вирусы – это внутриклеточные паразиты, они могут жить и размножаться только в живых клетках. Вирусы паразитируют на клетках организмов всех царств живой природы. Вирусы бактерий называются бактериофаги.

Если вирусы выделить в чистом виде, то они существуют в форме кристаллов (у них нет собственного обмена веществ, размножения и других свойств живого). Из-за этого многие ученые считают вирусы промежуточной стадией между живыми и неживыми объектами.

Вирусы – это неклеточная форма жизни. Вирусные частицы (вирионы) – это не клетки:

· вирусы гораздо меньше клеток;

· вирусы гораздо проще клеток по строению – состоят только из нуклеиновой кислоты и белковой оболочки, состоящей из множества одинаковых молекул белка.

· вирусы содержат либо ДНК, либо РНК.

Синтез компонентов вируса:

· В нуклеиновой кислоте вируса содержится информация о вирусных белках. Клетка делает эти белки сама, на своих рибосомах.

· Нуклеиновую кислоту вируса клетка размножает сама, с помощью своих ферментов.

· Затем происходит самосборка вирусных частиц.

Значение вирусов:

· вызывают инфекционные заболевания (грипп, герпес, СПИД и т.д.)

· некоторые вирусы могут встраивать свою ДНК в хромосомы клетки-хозяина, вызывая мутации.

 

 

Й этап. Подготовительный этап. Образование мономеров из полимеров.

Расщепление полимеров до мономеров. Процесс протекает в пищ.тракте или цитоплазме клеток. Вся энергия расходуется в виде тепла.

Из липидов глицерин и жирные кислоты; из белков аминокислоты и из углеводов глюкоза.

 

Cлюсарев стр.178

Регенерация – способность организмов восстанавливать поврежденные ткани/органы.

Различают физиологическую, репаративную и патологическую регенерацию.

Физиологическая естественное восстановление клеток и тканей в онтогенезе. Например, смена эритроцитов, кожного эпителия.

Репаративная восстановление после повреждения или гибели клеток и тканей.

Патологическая разрастание тканей не идентичных здоровым тканям. Например, разрастание рубцовой ткани на месте ожога, хряща - на месте перелома, размножение клеток соединительной ткани - на месте мышечной ткани сердца, раковая опухоль.

Проблемы:

Возраст, особенности обмена веществ, состояние нервной и эндокринной систем, питание, интенсивность кровообращения в повреждённой ткани, сопутствующие заболевания могут ослабить, усилить или качественно изменить процесс регенерации. В некоторых случаях это приводит к возникновению еще одного вида регенерации - патологической регенерации. Её проявления: длительно незаживающие язвы, нарушения срастания переломов костей, избыточные разрастания тканей или переход одного типа ткани в другой.

 

Гетеро- и эухроматин.

Оперон

участок ДНК, транскрипция которого осуществляется на одну молекулу информационной РНК под контролем одного специального белка-регулятора. Концепция оперона была пред­ложена в 1961 г. Ф. Жакобом и Ж. Мано для объяснения меха­низма «включения» и «выключения» генов в зависимости от по­требности клетки прокариотического организма в веществах, синтез которых контролируют эти гены. Дальнейшие эксперимен­ты позволили дополнить эту концепцию, а также подтвердили, что оперонная регуляция (т. е. регуляция на уровне транскрип­ции) является основным механизмом регуляции активности ге­нов у прокариот и ряда вирусов.

В состав оперона входят структурные гены и регуляторные элементы (не путать с геном-регулятором). Структурные гены кодируют белки, осуществляющие последовательно этапы биосинтеза какого-либо вещества.

Регуляторными элементами являются сле­дующие:

— промотор — Промотор – посадочная площадка для РНК-полимеразы

- оператор - особый участок ДНК, с которого начинается операция – синтез иРНК.

- терминатор - участок в конце оперона, сигнализирующий о прекращении транскрипции.


 

 

Структурные гены- гены, в которых записана наследственная информация о структуре белков.

Промотор – посадочная площадка для РНК-полимеразы.

Оператор – особый участок ДНК, с которого начинается операция – синтез иРНК.

Факторы транскрипции (транскрипционные факторы) — белки́, контролирующие процесс синтеза мРНК на матрице ДНК (транскрипцию) путём связывания со специфичными участками ДНК

24.Мультимерная организация белка на примере гемоглобина человека. Серповидно-клеточная анемия.

Гемоглобин — специфический белок эритроцитов, легко выделяемый из организма без применения трудоемких биохимических методик. Молекула гемоглобина состоит из четырех полипептидных цепей (двух α - и двух β -цепей), каждая из которых соединена с небелковым компонентом — гемом, содержащим железо.

Серповидноклеточная анемия — это наследственная гемоглобинопатия, связанная с таким нарушением строения белка гемоглобина, при котором он приобретает особое кристаллическое строение — так называемый гемоглобин S. Эритроциты, несущие гемоглобин S вместо нормального гемоглобина А, под микроскопом имеют характерную серпообразную форму (форму серпа), за что эта форма гемоглобинопатии и получила название серповидноклеточной анемии.

 

25.Основы генетической уникальности индивидуума (иммуногенетика). Генетический комплекс гистосовместимости человека (HLA). Его значение в трансплантологии.

Иммуногенетика - раздел иммунологии, занятый изучением четырех основных проблем:

1) генетики гистосовместимости;

2) генетического контроля структуры иммуноглобулинов и других иммунологически значимых молекул;

3) генетического контроля силы иммунного реагирования и

4) генетики антигенов.

 

Иммуногенетика- раздел иммунологии, изучающий генетич. обусловленность факторов иммунитета, внутривидовое разнообразие и наследование тканевых антигенов, генетич. и популяц. аспекты взаимоотношений макро- и микроорганизма и тканевую несовместимость.

Начало И. положили работы Э. Дунгерна и Л. Хиршфельда, открывших наследование групповых антигенов крови (1910). Термин «И.» предложили М. Ирвин и Л. Коле (1936).

Человеческие лейкоцитарные антигены, Система генов тканевой совместимости человека (англ. HLA, Human Leucocyte Antigens) — группа антигенов гистосовместимости, главный комплекс гистосовместимости (далее MHC) у людей. Представлены более, чем 150 антигенами. Локус, расположенный на 6-й хромосоме содержит большое количество генов, связанных с иммунной системой человека. Этими генами кодируются в том числе и антигенпредставляющие белки, расположенные на поверхности клетки. Гены HLA являются человеческой версией генов MHC многих позвоночных (на них проводилось множество исследований MHC генов).

Роли HLA важны в защите от болезней, могут быть причиной отторжения органов после пересадки, могут защищать от рака или увеличивать его вероятность (если разрегулированы из-за частых инфекций. Они могут влиять на развитие аутоиммунных заболеваний (например, сахарный диабет 1-го типа, целиакию).

 

Структурно-функциональные уровни организации наследственного материала у прокариот и эукариот: генный, хромосомный, геномный. Ген и его свойства. Триплетный код. Внутриклеточная регуляция (гипотеза Жакоба и Моно).

Генный уровень:

Изучение этого уровня связано с функциями и строением нуклеиновых кислот.

Известны две группы нуклеиновых кислот: РНК и ДНК.

ДНК находится в ядре и входит в состав хроматина, а также митохондрии, центросомы, пластиды, а РНК - в ядрышках, матриксе цитоплазмы, рибосомах.

Носителем наследственной информации в клетке является ДНК, а РНК - служит для передачи и реализации генетической информации у про- и эукариот. С помощью и-РНК происходит процесс перевода последовательности нуклеотидов ДНК в полипептид.

У некоторых организмов, кроме ДНК, носителем наследственной информации может быть РНК, например, у вирусов табачной мозаики, полиомиелита, СПИДа.

 

Хромосомный уровень организации наследственного материала характеризуется особенностями морфологии и функций хромосом.

Геномный уровень организации наследственного материала, объединяющий всю совокупность хромосомных генов, является эволюционно сложившейся структурой, характеризующейся относительно большей стабильностью, нежели генный и хромосомный уровни.

Ген – участок молекулы ДНК, определяющий порядок аминокислот в молекуле белка.

Свойства гена:

1 дискретность действия- развитие различных признаков контролируется разными генами.

2 стабильность - передается в ряду поколений в неизменном виде.

3 специфичность - каждый из генов обуславливает развитие определенного признака.

4 плейотропия - способность генов обеспечивать развитие одновременно нескольких признаков

Ген (от греч. genos — происхождение) представляет собой мельчайшую единицу наследственности, которая обеспечивает преемственность в потомстве того или иного элементарного признака организма. У высших организмов ген входит в состав особых нитевидных образований — хромосом, находящихся внутри ядра клетки. Совокупность всех генов организма составляет его геном. В геноме человека насчитывается около ста тысяч генов. По своим химическим характеристикам ген представляет собой участок молекулы ДНК (у некоторых вирусов — РНК), в определенной структуре которого закодирована та или иная наследственная информация. Каждый ген содержит некоторый рецепт, который обеспечивает соответствующий синтез определенного белка, и таким образом совокупность генов управляет всеми химическими реакциями организма и определяет все его признаки. Важнейшим свойством гена является сочетание высокой устойчивости, неизменяемости в ряду поколений со способностью к наследуемым изменениям —мутациям, которые являются источником изменчивости организмов и основой для действия естественного отбора.

 

Триплетный код. — генетический код, в котором каждая аминокислота полипептидной цепи определяется группой из трех нуклеотидов ДНК.

Общую схему строения генетического аппарата прокариот предложили фр. Жакоб и Моно. Долго не могли объяснить факт: бактерии начинают синтезировать определенный фермент тогда, когда в среде имеется вещество, расщепляемое данным ферментом (субстрат реакции). Если в среде присутствует лактоза и глюкоза, то вначале разлагается глюкоза, т.к. у бактерий этот фермент есть постоянно. Лишь потом начинается синтезироваться фермент, разлагающий лактозу.

Схема генетического контроля белкового синтеза получила название гипотезы оперона. По этой схеме гены функционально неодинаковы: одни из них (структурные гены) содержат информацию о расположении аминокислот в молекуле белка-фермента, другие (гены-регуляторы) выполняют регуляторные функции, оказывающие влияние на активность структурных генов.

Морфология семенников

Семенники – мужские парные половые железы, в которых вырабатываются половые продукты и половые гормоны. По своему строению семенники различны у разных животных. У низших позвоночных (рыбы) семенники расположены в полости тела. У плацентарных млекопитающих они вынесены за пределы полости тела и располагаются в особом органе – мошонке в связи с высокой температурой тела.

Морфология яичников


Яичник у большинства животных представляет собой парную половую железу, в которой развиваются яйцеклетки. У птиц яичник непарный, что связано с приспособлением к полету. У некоторых животных он располагается в полости тела (рыбы), у млекопитающих и человека в полости малого таза. Строение яичника состоит из соединительнотканной основы – стромы. В ней различают внутреннюю – мозговую часть, и наружный – корковый слой. Снаружи железа покрыта однослойным зачатковым эпителием.

 

Постнатальный онтогенез и его периоды. Роль эндокринных желез: щитовидной, гипофиза, половых в регуляции жизнедеятельности организма в постнатальном онтогенезе. Влияние мелатонина на физиологические процессы.

Онтогенез, или индивидуальное развитие организма, делится на два периода: пренатальный (внутриутробный) и постнатальный (после рождения).

Пренатальный период продолжается от момента зачатия и формирования зиготы до рождения; постнатальный – от момента рождения и до смерти.

Постнатальный период онтогенеза подразделяют на одиннадцать периодов:

1-й-10-й день – новорожденные;

10-й день–1 год – грудной возраст;

1–3 года – раннее детство;

4-7 лет – первое детство;

8-12 лет – второе детство;

13-16 лет – подростковый период;

17-21 год – юношеский возраст;

22-35 лет – первый зрелый возраст;

36-60 лет – второй зрелый возраст;

61-74 года – пожилой возраст;

с 75 лет – старческий возраст,

после 90 лет – долгожители.

Завершается онтогенез естественной смертью.

Эндокринные железы играют большую роль в развитии организма. При недостаточной функции щитовидной железы, если она проявляется в детском возрасте, развивается заболевание кретинизм, характеризующиеся психической отсталостью, задержкой роста и полового развития, нарушение пропорций тела.

Гипофиз. В нем находится гормон, стимулирующий рост, соматотропный гормон. При пониженной функции в детском возрасте развивается карликовость (нанизм), при повышенной – гигантизм. При выделении гормона в зрелом возрасте происходит патологический рост отдельных органов. Наблюдается разрастание костей кисти, стопы, лица (акромегалия).

Половые железы вырабатывают половые клетки и половые гормоны под влиянием которых происходит формирование вторичных половых признаков.

Мелатонин — основной гормон эпифиза, регулятор суточных ритмов:

Доносит до всех клеток организма о времени дня и световой фазе солнечного дня. Разрушается на свету. Вырабатывается в темноте.

При недостатке мелатонина: раннее старение, ранняя менопауза, развитие ожирения и рака.

Понятие о гомеостазе-гомеокинезе. Общие закономерности гомеостаза живых систем. Генетические, клеточные и системные основы гомеостатических реакций организма. Роль эндокринной и иммунной систем в обеспечении гомеостаза и адаптивных изменений. Виды гомеостаза.

См. стр 190 Слюсарева!

Гомеостаз - относительное динамическое постоянство внутренней среды (крови, лимфы, тканевой жидкости) и устойчивость основных физиологических функций (кровообращения, дыхания, терморегуляции, обмена веществ и т.д.) организма человека и животных.

Гомеокинез это процесс изменения работы организма, направленный на установление гомеостаза (т.н. подвижное равновесие).

Нормализация физиологических показателей осуществляется на основе свойства раздражимости. Способность к поддержанию гомеостаза неодинакова у различных видов. По мере усложнения организмов эта способность прогрессирует, делая их в большей степени независимыми от колебаний внешних условий. Особенно это проявляется у высших животных и человека, имеющих сложные нервные, эндокринные и иммунные механизмы регуляции. Влияние среды на организм человека в основном является не прямым, а опосредованным благодаря созданию им искусственной среды, успехам техники и цивилизации.

В системных механизмах гомеостаза действует кибернетический принцип отрицательной обратной связи: при любом возмущающем воздействии происходит включение нервных и эндокринных механизмов, которые тесно взаимосвязаны.

Виды гомеостаза:

Генетический гомеостаз на молекулярно-генетическом, клеточном и организменном уровнях направлен на поддержание сбалансированной системы генов, содержащей всю биологическую информацию организма. На популяционновидовом уровне генетический гомеостаз - это способность популяции поддерживать относительную стабильность и целостность наследственного материала, которые обеспечиваются процессами редукционного деления и свободным скрещиванием особей, что способствует сохранению генетического равновесия частот аллелей.

Физиологический гомеостаз связан с формированием и непрестанным поддержанием в клетке специфических физико-химических условий. Постоянство внутренней среды многоклеточных организмов поддерживается системами дыхания, кровообращения, пищеварения, выделения и регулируется нервной и эндокринной системами.

Структурный гомеостаз основывается на механизмах регенерации, обеспечивающих морфологическое постоянство и целостность биологической системы на разных уровнях организации. Это выражается в восстановлении внутриклеточных и органных структур, путем деления и гипертрофии.

Нарушение механизмов, лежащих в основе гомеостатических процессов, рассматривается как «болезнь» гомеостаза.

36.Проблема трансплантации органов и тканей. Ауто-, алло- и гетеротрансплантация. Трансплантация жизненно важных органов. Тканевая несовместимость и пути ее преодоления. Искусственные органы.

 

ТРАНСПЛАНТАЦИЯ - пересадка или приживление органов и тканей. Пересаженный участок называется ТРАНСПЛАНТАНТОМ, организм у которого берут ткань для пересадки является ДОНОРОМ, которому пересаживают - РЕЦИПИЕНТОМ. Успех трансплантации зависит от иммунологических реакций организма.

 

При АУТОТРАНСПЛАНТАЦИИ (пересадка на другую часть тела того же организма) белки (антигены) трансплантанта не отличаются от белков реципиента и операция наиболее успешна, иммунологическая операция не возникает.

При АЛЛОТРАНСПЛАНТАЦИИ (от одной особи к другой одного вида) донор и реципиент отличаются по антигенам, у высших животных наблюдается длительное приживание.

КСЕНОТРАНСПЛАНТАЦИЯ(гетеротрансплантация) (донор и реципиент относятся к разным видам) удается у некоторых беспозвоночных, но у высших животных такие трансплантанты рассасываются.

 

Тканевая несовместимость — комплекс иммунных реакций организма к трансплантируемым чужеродным клеткам, тканям или органам.

При трансплантации большое значение имеет явление ИММУНОЛОГИЧЕСКОЙ ТОЛЕРАНТНОСТИ (терпимости) к чужеродным клеткам вследствие реакции отторжения. Подавление иммунитета в случае пересадки тканей (иммунодепрессия) достигается: подавлением активности иммунной системы, облучением, введением антилимфотической сыворотки, гормонов коры надпочечников, химических препаратов - антидепрессантов (имуран). Основная задача подавить не просто иммунитет, а трансплантационный иммунитет.

Искусственные органы – это созданные человеком органы -имплантанты, которые могут заменить настоящие органы тела.

Общие закономерности онтогенеза многоклеточных. Дифференциация и интеграция в развитии. Избирательная активность генов в развитии: роль цитоплазматических факторов яйцеклетки, контактных взаимодействий клеток, межтканевых и гормональных влияний.

Онтогенез - это индивидуальное развитие организма (особи) с момента его зарождения до прекращения существования.

В ходе онтогенеза многоклеточных организмов происходит рост, дифференцировка и интеграция частей организма.

 

Дифференцировка –специализация клеток; изменение развивающейся структуры.

Интеграция -процесс объединения структур и функций в целостном организме, характерный для живых систем на каждом из уровней их организации.

 

Показано, что в яйцеклетке, а позже в зиготе цитоплазматические факторы белковой природы проникают в ядро бластомера и определяют характер считываемой информации. Следовательно, развитие эмбриональных закладок детерминировано (определено).

Цитокины — это наиболее универсальный класс внутри — и межтканевых регуляторных веществ. Они представляют собой гликопротеиды, которые в очень низких концентрациях влияют на реакции клеточного роста, пролиферацию и дифференцировку. Часто их рассматривают как тканевые гормоны, то есть гормоны местного действия, распространяющиеся через межклеточное вещество в пределах одной или близлежащих тканей.

Контактные взаимодействия между клетками важны для дифференцировки на всех стадиях развития - от самых ранних и до взрослого состояния.

Обнаружено, что при формировании сложных фасеточных глаз у дрозофилы межклеточные взаимодействия распространяются по эмбриональной ткани в виде волны. Области образующихся межклеточных контактов имеют разную форму. Установлено, что дифференцировка клеток зависит от геометрии их контактных зон с соседними клетками. Клетки с одинаковой формой контактов дифференцируются в одном и том же направлении. Среди всех остальных выявляется одна фоторе-цепторная клетка, которая отличается от других по этому показателю. Именно она может воспринимать ультрафиолетовую область спектра.

Таким образом, межклеточные взаимодействия важны для развития организма и его целостности, особенно в период дробления. Начиная со стадии бластулы, ведущим интегрирующим механизмом онтогенеза становится эмбриональная индукция.

 

 

Концепция волчка

Наблюдается увеличение амплитуды циркадианных биоритмов на ранних этапах онтогенеза млекопитающих, развитие их до максимума в молодом и зрелом возрасте и последующее угасание амплитуд в старости.

 

Гетерохронность — различие во времени наступления старения отдельных тканей, органов и систем. Так, гипотрофические изменения тимуса начинаются уже после 13-15 лет, половых желёз — в климактерическом периоде, а гипофиза — незадолго до смерти.

(когда старение наступает в разных тканях в разные стадии возраста)

Гетеротропность — неодинаковая выраженность старения в разных структурах одного и того же органа или в различных органах.

(Когда старение в разных клетках неодинаково выражена)

Гетерокатефность — разнонаправленность возрастных изменений. Например, по мере старения происходит снижение функции половых гормонов периферическими железами и повышение образования гонадотропных гормонов аденогипофизом.

(Когда старение вызывает не только угасание каких-либо функций, но вызывает увеличение некоторых функций)

Влияние фотопериодических факторов на сезонную адаптацию у простейших и многоклеточных, на ритмы рождаемости. Роль мелатонина. Климатогеографические особенности влияния фотопериодизма на жизнедеятельность. Полярная ночь и полярный день. Проблема «светового загрязнения».

Фотопериодизм – реакция организмов на сезонные изменения долготы дня. Открыт В. Гарнером и Н. Аллардом в 1920 г. во время селекционной работы с табаком.

Мелатонин — основной гормон эпифиза, регулятор суточных ритмов:

Доносит до всех клеток организма о времени дня и световой фазе солнечного дня. Разрушается на свету. Вырабатывается в темноте. При недостатке мелатонина: раннее старение, ранняя менопауза, развитие ожирения и рака. Антоним: сератонин.

 

Правило Ашоффа

" У ночных животных активный период (бодрствование) более продолжителен при постоянном освещении, в то время как у дневных животных бодрствование более продолжительно при постоянной темноте". И действительно, как впоследствии установил Ашофф, при длительной изоляции человека или животных в темноте цикл " бодрствование - сон" удлиняется за счет увеличения продолжительности фазы бодрствования. Из правила Ашоффа следует, что именно свет определяет циркадные колебания организма.


Поделиться:



Популярное:

  1. A. Какой заголовок подходит к данному тексту?
  2. BIM как частный случай PLM. Жизненный цикл продукта, жизненный цикл строительного проекта.
  3. I) индивидуальная монополистическая деятельность, которая проявляется как злоупотребление со стороны хозяйствующего субъекта своим доминирующим положением на рынке.
  4. I-1. Определение объёма гранта
  5. I. Какое из данных утверждений выражает основную идею текста?
  6. I. Логистика как системный инструмент.
  7. I. Понятие как форма мышления
  8. I. Предмет, метод и специфика административного права как отрасли права
  9. I. Теоретические основы использования палочек Кюизенера как средство математического развития дошкольников.
  10. I. Флагелляция как метод БДСМ
  11. I.4. СЕМЬЯ И ШКОЛА : ОТСУТСТВИЕ УСЛОВИЙ ДЛЯ ВОСПИТАНИЯ
  12. IDEF1X - методология моделирования данных, основанная на семантике, т.е. на трактовке данных в контексте их взаимосвязи с другими данными.


Последнее изменение этой страницы: 2017-03-11; Просмотров: 2350; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.123 с.)
Главная | Случайная страница | Обратная связь