Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Прямая на плоскости. Общее уравнение прямой. Частные случаи. Расположение двух прямых на плоскости.



 

Рассмотрим различные виды уравнений прямой на плоскости.

Пусть прямая проходит через точку М0 (x0, y0) перпендикулярно вектору n = {A, B}. Тогда вектор , где М(х, у) – произвольная точка прямой, ортогонален n. Поэтому координаты любой точки данной прямой удовлетворяют уравнению

А(х – х0) + В(у – у0) = 0 - (7.3)

уравнение прямой, проходящей через данную точку перпендикулярно данному вектору.

Замечание. Вектор n называется нормалью к прямой.

 

Преобразуем уравнение (7.3) к виду:

Ах + Ву + (-Ах0 – Ву0) = 0.

Обозначив -Ах0 – Ву0 = С, получим общее уравнение прямой:

Ах + Ву + С = 0. (7.4)

Получим теперь уравнение прямой, проходящей через точку М0 (x0, y0) параллельно вектору q = {l, m}. Так как вектор , где М(х, у) – произвольная точка прямой, коллинеарен q, координаты любой точки данной прямой удовлетворяют уравнению

, (7.5)

называемому каноническим уравнением прямой. Вектор q при этом называется направляющим вектором прямой. В частности, если прямая проходит через точки М11, у1) и М22, у2), ее направляющим вектором можно считать , и из уравнения (7.5) следует:

- (7.6)

уравнение прямой, проходящей через две заданные точки.

Пример.

Составим уравнение прямой, проходящей через точки М(1, 2) и N(5, -3). Уравнение (7.6) примет вид:

- общее уравнение данной прямой.

 

Обозначив за t значения равных дробей, стоящих в левой и правой частях уравнения (7.5),

можно преобразовать это уравнение к виду:

x = x0 + lt, y = y0 + mt - (7.7)

параметрические уравнения прямой.

Для прямой l, не параллельной оси Оу, можно ввести так называемый угловой коэффициент k – тангенс угла, образованного прямой и осью Ох, и записать уравнение

у l прямой в виде:

у = kx + b - (7.8)

b l1 уравнение прямой с угловым коэффициентом.

α α Действительно, все точки прямой l1, параллельной l и проходящей

х через начало координат, удовлетворяют уравнению у = kх, а

ординаты соответствующих точек на прямой l отличаются от них

на постоянную величину b.

Неполные уравнения прямой.

Уравнение (7.4) называется полным, если коэффициенты А, В и С не равны нулю, и неполным, если хотя бы одно из этих чисел равно нулю. Рассмотрим возможные виды неполных уравнений прямой.

1) С = 0 - прямая Ах + Ву = 0 проходит через начало координат.

2) В = 0 - прямая Ах + С = 0 параллельна оси Оу (так как нормаль к прямой {A, 0} перпендикулярна оси Оу).

3) А = 0 - прямая Ву + С = 0 параллельна оси Ох.

4) В=С=0 – уравнение Ах = 0 определяет ось Оу.

5) А=С=0 – уравнение Ву = 0 определяет ось Ох.

 

Таким образом, прямая, задаваемая полным уравнением, не проходит через начало координат и не параллельна координатным осям. Преобразуем полное уравнение прямой следующим образом:

Ах + Ву + С = 0 |: (-C), (7.9)

где и равны величинам отрезков, отсекаемых прямой на осях Ох и Оу. Поэтому уравнение (7.9) называют уравнением прямой в отрезках.

 

Условия параллельности и перпендикулярности прямых сводятся к условиям параллельности и перпендикулярности нормалей:

- условие параллельности, (7.11)

- условие перпендикулярности. (7.12).

Если прямые заданы каноническими уравнениями (7.5), по аналогии с пунктом 1 получим:

, (7.13)

- условие параллельности, (7.14)

- условие перпендикулярности. (7.16).

Здесь и - направляющие векторы прямых.

Эллипс.

Эллипсом называется множество точек плоскости, для которых сумма расстояний до двух фиксированных точек F1 и F2 этой плоскости, называемых фокусами, есть величина постоянная.

Замечание. При совпадении точек F1 и F2 эллипс превращается в окружность.

Выведем уравнение эллипса, выбрав декартову систему

у М(х, у) координат так, чтобы ось Ох совпала с прямой F1F2, начало

r1 r2 координат – с серединой отрезка F1F2. Пусть длина этого

отрезка равна 2с, тогда в выбранной системе координат

F1 O F2 x F1(-c, 0), F2(c, 0). Пусть точка М(х, у) лежит на эллипсе, и

сумма расстояний от нее до F1 и F2 равна 2а.

Тогда r1 + r2 = 2a, но ,

поэтому Введя обозначение b² = a² -c² и проведя несложные алгебраические преобразования, получим каноническое уравнение эллипса: (11.1)

Эксцентриситетом эллипса называется величина е=с/а (11.2)

Директрисой Di эллипса, отвечающей фокусу Fi, называется прямая, расположенная в одной полуплоскости с Fi относительно оси Оу перпендикулярно оси Ох на расстоянии а/е от начала координат.

Замечание. При ином выборе системы координат эллипс может задаваться не каноническим уравнением (11.1), а уравнением второй степени другого вида.

 

Свойства эллипса:

Эллипс имеет две взаимно перпендикулярные оси симметрии (главные оси эллипса) и центр симметрии (центр эллипса). Если эллипс задан каноническим уравнением, то его главными осями являются оси координат, а центром – начало координат. Поскольку длины отрезков, образованных пересечением эллипса с главными осями, равны 2а и 2b (2a> 2b), то главная ось, проходящая через фокусы, называется большой осью эллипса, а вторая главная ось – малой осью.

1)Весь эллипс содержится внутри прямоугольника

2)Эксцентриситет эллипса e < 1.

Действительно,

4) Директрисы эллипса расположены вне эллипса (так как расстояние от центра эллипса до директрисы равно а/е, а е< 1, следовательно, а/е> a, а весь эллипс лежит в прямоугольнике )

5) Отношение расстояния ri от точки эллипса до фокуса Fi к расстоянию di от этой точки до отвечающей фокусу директрисы равно эксцентриситету эллипса.

Доказательство.

Расстояния от точки М(х, у) до фокусов эллипса можно представить так:

Составим уравнения директрис:

(D1), (D2). Тогда Отсюда ri / di = e, что и требовалось доказать.

Гипербола.

Гиперболой называется множество точек плоскости, для которых модуль разности расстояний до двух фиксированных точек F1 и F2 этой плоскости, называемых фокусами, есть величина постоянная.

Выведем каноническое уравнение гиперболы по аналогии с выводом уравнения эллипса, пользуясь теми же обозначениями.

|r1 - r2| = 2a, откуда Если обозначить b² = c² - a², отсюда можно получить

- каноническое уравнение гиперболы. (11.3)

Эксцентриситетом гиперболы называется величина е = с / а.

Директрисой Di гиперболы, отвечающей фокусу Fi, называется прямая, расположенная в одной полуплоскости с Fi относительно оси Оу перпендикулярно оси Ох на расстоянии а / е от начала координат.

Свойства гиперболы:

Гипербола имеет две оси симметрии (главные оси гиперболы) и центр симметрии (центр гиперболы). При этом одна из этих осей пересекается с гиперболой в двух точках, называемых вершинами гиперболы. Она называется действительной осью гиперболы (ось Ох для канонического выбора координатной системы). Другая ось не имеет общих точек с гиперболой и называется ее мнимой осью (в канонических координатах – ось Оу). По обе стороны от нее расположены правая и левая ветви гиперболы. Фокусы гиперболы располагаются на ее действительной оси.

Ветви гиперболы имеют две асимптоты, определяемые уравнениями

и .

Наряду с гиперболой (11.3) можно рассмотреть так называемую сопряженную гиперболу, определяемую каноническим уравнением

, (11.3`)

для которой меняются местами действительная и мнимая ось с сохранением тех же асимптот.

4) Эксцентриситет гиперболы e > 1.

5) Отношение расстояния ri от точки гиперболы до фокуса Fi к расстоянию di от этой точки до отвечающей фокусу директрисы равно эксцентриситету гиперболы.

Доказательство можно провести так же, как и для эллипса.

 

Парабола.

Параболой называется множество точек плоскости, для которых расстояние до некоторой фиксированной точки F этой плоскости равно расстоянию до некоторой фиксированной прямой. Точка F называется фокусом параболы, а прямая – ее директрисой.

 

у Для вывода уравнения параболы выберем декартову

систему координат так, чтобы ее началом была середина

d M(x, y) перпендикуляра FD, опущенного из фокуса на директри-

r су, а координатные оси располагались параллельно и

перпендикулярно директрисе. Пусть длина отрезка FD

D O F x равна р. Тогда из равенства r = d следует, что

поскольку

Алгебраическими преобразованиями это уравнение можно привести к виду: y² = 2px, (11.4)

называемому каноническим уравнением параболы. Величина р называется параметром параболы.

 

Свойства параболы:

1) Парабола имеет ось симметрии (ось параболы). Точка пересечения параболы с осью называется вершиной параболы. Если парабола задана каноническим уравнением, то ее осью является ось Ох, а вершиной – начало координат.

2) Вся парабола расположена в правой полуплоскости плоскости Оху.

 

Замечание. Используя свойства директрис эллипса и гиперболы и определение параболы, можно доказать следующее утверждение:

Множество точек плоскости, для которых отношение е расстояния до некоторой фиксированной точки к расстоянию до некоторой прямой есть величина постоянная, представляет собой эллипс (при e< 1), гиперболу (при e> 1) или параболу (при е=1).


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 519; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.031 с.)
Главная | Случайная страница | Обратная связь