Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Свойства определителей матриц.
1. Если квадратная матрица AT является транспонированной матрицей A, то их определители совпадают |AT | = |A|, т.е. определитель не меняется, если заменить его строки столбцами и обратно, например, для определителя третьего порядка . 2. При перестановке 2-х строк или столбцов определитель изменит знак на противоположный, сохраняя абсолютную величину, т.е., например, 3. Если определитель имеет две одинаковые строки или столбца, то он равен нулю. Например, . Если переставить здесь 2-ю и 3-ю строки, то по свойству 2 этот определитель должен изменить знак, но сам определитель в данном случае не меняется, т.е. получаем |A| = –|A| или |A| = 0. 4. Общий множитель строки или столбца можно выносить за знак определителя. Например, . 5. Если все элементы какой–либо строки или столбца определителя равны нулю, то сам определитель равен нулю. 6. Если все элементы какой–либо строки или столбца определителя представлены в виде суммы 2-х слагаемых, то определитель можно представить в виде суммы 2-х определителей по формуле, например, . 7. Если к какой–либо строке (или столбцу) определителя прибавить соответствующие элементы другой строки (или столбца), умноженные на одно и тоже число, то определитель не изменит своей величины. Например, .
Миноры и алгебраические дополнения. Минором называется определитель квадратной матрицы, получаемый из исходной матрицы путем вычеркивания некоторых строк и столбцов Пусть имеем определитель третьего порядка: . Минором, соответствующим данному элементу aij определителя третьего порядка, называется определитель второго порядка, полученный из данного вычёркиванием строки и столбца, на пересечении которых стоит данный элемент, т.е. i-ой строки и j-го столбца. Миноры соответствующие данному элементу aij будем обозначать Mij. Например, минором M12, соответствующим элементу a12, будет определитель , который получается вычёркиванием из данного определителя 1-ой строки и 2-го столбца. Таким образом, формула, определяющая определитель третьего порядка, показывает, что этот определитель равен сумме произведений элементов 1-ой строки на соответствующие им миноры; при этом минор, соответствующий элементу a12, берётся со знаком “–”, т.е. можно записать, что
Аналогично можно ввести определения миноров для определителей второго порядка и высших порядков. Алгебраическим дополнением называется полученный минором определитель, взятый со знаком - который определяется номерами вычеркиваемыми строками и столбцами Алгебраическим дополнениемэлемента aij определителя называется его минор Mij, умноженный на (–1)i+j. Алгебраическое дополнение элемента aij обозначается Aij. Из определения получаем, что связь между алгебраическим дополнением элемента и его минором выражается равенством Aij = (–1)i+jMij. Например, Теорема (о разложении определителя по заданной строке или столбцу). Определитель равен сумме произведений элементов какой–либо его строки (или столбца) на их алгебраические дополнения.
Обратимые матрицы и способ их нахождения. Понятие обратной матрицы вводится только для квадратных матриц. Если A – квадратная матрица, то обратной для неё матрицей называется матрица, обозначаемая A-1 и удовлетворяющая условию (единичная матрица). (Это определение вводится по аналогии с умножением чисел) Обра́ тная ма́ трица — такая матрица A− 1, при умножении на которую исходная матрица A даёт в результате единичную матрицу E: Квадратная матрица обратима тогда и только тогда, когда она невырожденная, то есть её определитель не равен нулю. Для неквадратных матриц и вырожденных матриц обратных матриц не существует. Итак, чтобы найти обратную матрицу нужно: 1. Найти определитель матрицы A. 2. Найти алгебраические дополнения Aij всех элементов матрицы A и составить матрицу , элементами которой являются числа Aij. 3. Найти матрицу, транспонированную полученной матрице , и умножить её на – это и будет . Аналогично для матриц второго порядка, обратной будет следующая матрица . Примеры. 1. Найти матрицу, обратную данной . |A| = 2. Найдем алгебраические дополнения элементов матрицы A.
Ранг матрицы над полем. Количество линейно независимых строк матрицы называют строчным рангом матрицы, а количество линейно независимых столбцов матрицы называют столбцовым рангом матрицы. В действительности, оба ранга совпадают. Их общее значение и называется рангом матрицы. Другой эквивалентный данному подход заключается в определении ранга матрицы, как максимального порядка отличного от нуля минора матрицы.
|
Последнее изменение этой страницы: 2017-03-14; Просмотров: 552; Нарушение авторского права страницы