Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ТЕОРЕМА О ДВИЖЕНИИ ЦЕНТРА МАСС МЕХ. СИСТЕМЫ



 

Билет

1. Теплова́ я маши́ на — устройство, преобразующее тепловую энергию в механическую работу (тепловой двигатель) или механическую работу в тепло (холодильник). Преобразование осуществляется за счёт изменения внутренней энергии рабочего тела — на практике обычно пара или газа.

Идеальная тепловая машина — машина, в которой произведённая работа и разница между количеством подведённого и отведённого тепла равны. Работа идеальной тепловой машины описывается циклом Карно.

При работе часть тепла Q1 передается от нагревателя к рабочему телу, а затем часть энергии Q2 передается холодильнику, который охлаждает машину. КПД тепловой машины считается по формуле ((Q1-Q2)/Q1)х100.

Периодически действующий двигатель, совершающий работу за счет получаемого извне тепла, называется тепловой машиной.

 

Большую разность температур и работу можно получить при разделении нагревателя и холодильника(как в двигателе Уатта). Поэтому тепловые машины состоят из трех основныхчастей: 1- нагревателя, 2- холодильника и 3- совершающего работу - рабочеготела (обычно газа). В качестве холодильника может использоваться окружающаясреда, в качестве нагревателя – источники энергии («концентрированной» вэнергоносителях, отбираемой у продуктов).

 

2. Часто возникает необходимость найти характеристики электрического поля, создаваемого системой зарядов, локализованных в небольшой области пространства. Примером такой системы зарядов могут служить атомы и молекулы, состоящие из электрически заряженных ядер и электронов. Если требуется найти поле на расстояниях, которые значительно больше размеров области расположения частиц, то нет необходимости пользоваться точными, но громоздкими формулами, достаточно ограничится более простыми приближенными выражениями.
  Пусть электрическое поле создается набором точечных зарядов qk (k = 1, 2, …, N), расположенных в пределах небольшой области пространства, характерные размеры которой обозначим l (рис. 285).

рис. 285


  Для расчета характеристик электрического поля, в некоторой точке A, находящейся на расстоянии r, значительно превышающем l, все заряды системы можно «объединить» и рассматривать систему зарядов как точечный заряд Q, величина которого равна сумме зарядов исходной системы

 


  Этот заряд можно мысленно расположить в любой точке области расположения системы зарядов qk (k = 1, 2, …, N), так как при l < < r, изменение положения в пределах малой области незначительно повлияет на изменение поля в рассматриваемой точке.
  В рамках такого приближения напряженность и потенциал электрического поля определяются по известным формулам

 


  Если суммарный заряд системы равен нулю, то указной приближение является слишком грубым, приводящим к выводу об отсутствии электрического поля.
  Более точное приближение можно получить, если мысленно собрать отдельно положительные и отрицательные заряды рассматриваемой системы. Если их «центры» смещены друг относительно друга, то электрическое поле такой системы может быть описано как поле двух точечных зарядов, равных по величине и противоположных по знаку, смещенных друг относительно друга. Более точную характеристику системы зарядов в этом приближении мы дадим немного позднее, после изучения свойств электрического диполя.
Электрическим диполем называется система, состоящая из двух точечных зарядов одинаковых по величине и противоположных по знаку, расположенных на малом расстоянии друг от друга.
  Рассчитаем характеристики электрического поля, создаваемого диполем, состоящего из двух точечных зарядов +q и − q, расположенных на расстоянии a друг от друга (рис. 286).

 

рис. 286


  Сначала найдем потенциал и напряженность электрического поля диполя на его оси, то есть на прямой, проходящей через оба заряда. Пусть точка A, находится на расстоянии r от центра диполя, причем будем считать, что r > > a. В соответствии с принципом суперпозиции потенциал поля в данной точке описывается выражением

 


На последнем шаге мы пренебрегли вторым малой величиной (a/2)2 по сравнению с r2. Величину вектора напряженности электрического поля также можно вычислить на основании принципа суперпозиции

 


Напряженность поля можно вычислить, используя соотношение между потенциалом и напряженностью поля Ex = − Δ φ /Δ x. В данном случае вектор напряженности направлен вдоль оси диполя, поэтому его модуль рассчитывается следующим образом

 


Обратите внимание, что поле диполя ослабевает быстрее поля точечного заряда, так потенциал поля диполя убывает обратно пропорционально квадрату расстояния, а напряженность поля − обратно пропорционально кубу расстояния.
  Аналогичным, но более громоздким, способом можно найти потенциал и напряженность поля диполя в произвольной точке, положение которой определим с помощью полярных координат: расстояния до центра диполя r и угла θ (рис. 287).

 

рис. 287


  По принципу суперпозиции потенциал поля в точке A равен

 


Учитывая, что r > > a, формулу (6) можно упростить с помощью приближений

 


в этом случае получаем

 


  Вектор напряженности электрического поля E удобно разложить на две составляющие: радиальную Er, направленную вдоль прямой, соединяющей данную точку с центром диполя, и перпендикулярную ей Eθ (рис. 288).

 

рис. 288


  При таком разложении каждая компонента направлена вдоль направления изменения каждой из координат точки наблюдения, поэтому может быть найдена из соотношения, связывающего напряженность поля и изменение потенциала.
  Для того, чтобы найти компоненты вектора напряженности поля, запишем отношение изменения потенциала, при смещении точки наблюдения в направлении соответствующих векторов (рис. 289).

 

рис. 289


Радиальная составляющая тогда выразится соотношением

 


  Для расчета перпендикулярной составляющей следует учесть, что величина малого смещения в перпендикулярном направлении выражается через изменение угла следующим образом Δ l = rΔ θ.
Поэтому величина этой компоненты поля равна

 


  При выводе последнего соотношения использована тригонометрическая формула для разности косинусов и приближенное соотношение, справедливое при малых Δ θ:

 

sinΔ θ ≈ Δ θ.


  Полученные соотношения полностью определяют поле диполя в произвольной точке и позволяют построить картину силовых линий этого поля (рис. 290).

 

рис. 290


  Теперь обратим внимание, что во всех формулах, определяющих потенциал и напряженность поля диполя, фигурирует только произведение величины одного из зарядов диполя на расстояние между зарядами. Поэтому именно это произведение является полной характеристикой электрических свойств и называется дипольным моментом системы. Так как диполь является системой двух точечных зарядов, то он обладает осевой симметрией, осью которой является прямая, проходящая через заряды. Следовательно, для задания полной характеристики диполя следует указать и ориентацию оси диполя. Проще всего это сделать, задавая вектор дипольного момента, величина которого равна дипольному моменту, а направление совпадает с осью диполя

 


где a − вектор, соединяющий отрицательный и положительный заряды диполя1. Такая характеристика диполя весьма удобна и позволяет во многих случая упрощать формулы, придавая им векторный вид. Так, например, потенциал поля диполя в произвольной точке, описываемый формулой (6), может быть записан в векторной форме

 


  После введения векторной характеристики диполя, его дипольного момента, появляется возможность использовать еще одну упрощающую модель − точечный диполь: систему зарядов, геометрическими размерами которой можно пренебречь, но обладающей дипольным моментом2.
Рассмотрим поведение диполя в электрическом поле.

 

рис. 291


  Пусть два точечных заряда, находящиеся на фиксированном расстоянии друг от друга, помещены в однородное электрическое поле. Со стороны поля на заряды действуют силы F = ±qE, равные по величине и противоположные по направлению. Суммарная сила, действующая на диполь равна нулю, однако эти силы приложены к различным точкам, поэтому суммарный момент этих отличен от нуля, а равен

 


где α − угол меду вектором напряженности поля и вектором дипольного момента. Наличие момента силы, приводит к тому, что дипольный момент системы стремится повернуться по направлению вектора напряженности электрического поля.
  Обратите внимание, что и момент силы, действующий на диполь, полностью определяется его дипольным моментом. Как мы показали ранее, если сумма сил, действующих на систему, равна нулю, то суммарный момент сил не зависит от оси, относительно которой этот момент рассчитывается. Положению равновесия диполя соответствуют как направление по полю α = 0, так и против него α = π, однако легко показать, что первое положение равновесия устойчиво, а второе нет.
Если электрический диполь находится в неоднородном электрическом поле, то силы, действующие на заряды диполя различны, поэтому результирующая сила отлична от нуля.
  Для упрощения, будем считать, что ось диполя совпадает с направлением вектора напряженности внешнего электрического поля. Совместим ось x системы координат с направлением вектора напряженности (рис. 292).

 

рис. 292


  Результирующая сила, действующая на диполь, равна векторной сумме сил, действующих на заряды диполя,

 


  Здесь E(x) − напряженность поля в точке расположения отрицательного заряда, E(x + a) − напряженность в точке положительного заряда. Так как расстояние между зарядами мало, разность напряженностей представлена как произведение скорости изменения напряженности на размер диполя. Таким образом, в неоднородном поле, на диполь действует сила, направлена в сторону возрастания поля, или диполь втягивается в область более сильного поля.
  В заключение вернемся к строгому определению дипольного момента произвольной системы зарядов. Вектор дипольного момента, системы, состоящей из двух зарядов (рис. 293),

 

рис. 293


может быть записан в виде


Если теперь пронумеровать заряды, то эта формула приобретает вид


где величины зарядов понимаются в алгебраическом смысле, с учетом их знаков. Последняя формула допускает очевидное обобщение (обоснованием которого является принцип суперпозиции) на систему произвольного числа зарядов

  Эта формула определяет дипольный момент произвольной системы зарядов, с ее помощью произвольная система зарядов может быть заменена на точечный диполь (рис. 294).

 

Билет

1.Цикл Карно состоит из четырёх стадий:

1. Изотермическое расширение (на рисунке — процесс A> Б). В начале процесса рабочее тело имеет температуру TH, то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты QH. При этом объём рабочего тела увеличивается.

2. Адиабатическое (изоэнтропическое) расширение (на рисунке — процесс Б> В). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника.

3. Изотермическое сжатие (на рисунке — процесс В> Г). Рабочее тело, имеющее к тому времени температуру TX, приводится в контакт с холодильником и начинает изотермически сжиматься, отдавая холодильнику количество теплоты QX.

4. Адиабатическое (изоэнтропическое) сжатие (на рисунке — процесс Г> А). Рабочее тело отсоединяется от холодильника. При этом его температура увеличивается до температуры нагревателя.

 

Цикл Карно

 

КПД цикла Карно:

Отсюда видно, что КПД цикла Карно с идеальным газом зависит только от температуры награвателя (Tн) и холодильника (Тх).

Из уравнения следуют выводы:

1. Для повышения КПД тепловой машины нужно увеличить температуру нагревателя и уменьшить температуру холодильника;

2. КПД тепловой машины всегда меньше 1.

Цикл Карно обратим, так как все его составные части являются

равновесными процессами.

 

2. Если проводник поместить во внешнее электростатическое поле или зарядить его, то на заряды данного проводника будет действовать электростатическое поле, под действием которого они начнут двигаться. Движение зарядов (ток) будет длиться до тех пор, пока не установится равновесное распределение зарядов, при котором электростатическое поле внутри данного проводника обращается в нуль. Это происходит в течение очень короткого времени. Действительно, если бы поле не было равно нулю, то в проводнике появилось бы упорядоченное движение зарядов без затраты энергии от внешнего источника, что не согласуется с законом сохранения энергии. Значит, напряженность поля во всех точках внутри проводника равна нулю:

Если внутри проводника электрического поле отсутствует, то потенциал во всех точках внутри проводника одинаков (φ = const), т. е.поверхность проводника в электростатическом поле является эквипотенциальной. Это означает, что вектор напряженности поля на внешней поверхности проводника направлен по перпендикуляру к каждой точке его поверхности. Если это было бы не так, то под действием касательной составляющей Е заряды начали бы перемещаться по поверхности проводника, что, в свою очередь, противоречило бы равновесному распределению зарядов.

Если проводнику дать некоторый дополнительный заряд Q, то нескомпенсированные заряды разместяться только на поверхности проводника. Это вытекает непосредственно из теоремы Гаусса, согласно которой заряд Q, который находится внутри проводника в некотором объеме, ограниченном произвольной замкнутой поверхностью, равен

поскольку во всех точках внутри замкнутой поверхности D=0.

Теперь мы будем искать взаимосвязь между напряженностью Е поля вблизи поверхности заряженного проводника и поверхностной плотностью зарядов на его поверхности σ . Для этого используем теорему Гаусса для бесконечно малого цилиндра с основаниями Δ S, который пересекает границу проводник—диэлектрик. Ось цилиндра направлена вдоль вектора Е (рис. 1). Поток вектора электрического смещения через внутреннюю часть цилиндрической поверхности равен нулю, так как внутри проводника Е1 (а следовательно, и D1 ) есть нуль, поэтому поток вектора D сквозь замкнутую цилиндрическую поверхность определяется только потоком сквозь наружное основание цилиндра. Используя теорему Гаусса, этот поток (DΔ S) равен сумме зарядов (Q=σ Δ S), находящихся внутри поверхности: DΔ S=σ Δ S т.е.
(1)
или
(2)
где ε — диэлектрическая проницаемость среды, находящаяся вокруг проводника.

Значит, напряженность электростатического поля у поверхности проводника задается поверхностной плотностью зарядов. Можно показать, что формула (2) задает напряженность электростатического поля вблизи поверхности проводника абсолютно произвольной формы.

Если во внешнее электростатическое поле поместить нейтральный проводник, то свободные заряды (электроны, ионы) будут совершать движение: положительные — по полю, отрицательные — против поля (рис. 2, а). На одном конце проводника будет собираться избыток положительного заряда, на другом — избыток отрицательного заряда. Эти заряды называются индуцированными (наведенными). Процесс будет продолжаться до тех пор, пока внутри проводника напряженность поля не станет равной нулю, а линии напряженности вне проводника — перпендикулярными его поверхности (рис. 2, б). Значит, нейтральный проводник, который внесен в электростатическое поле, разрывает часть линий напряженности; эти линии напряженности заканчиваются на отрицательных индуцированных зарядах и вновь начинаются на положительных. Индуцированные заряды распределяются на внешней поверхности нашего проводника. Явление перераспределения поверхностных зарядов на проводнике во внешнем электростатическом поле называется электростатической индукцией.

Из рис. 2, б мы видим, что индуцированные заряды образуются на проводнике вследствие смещения их под действием поля, т. е. σ есть поверхностной плотностью смещенных зарядов. Согласно (1), электрическое смещение D вблизи проводника численно равно поверхностной плотности смещенных зарядов. По этой причине вектор D получил название вектора электрического смещения.

Поскольку в состоянии равновесия заряды отсутствуют внутри проводника, то создание внутри него полости не окажет влияния на конфигурацию расположения зарядов и тем самым на электростатическое поле. Значит, поле будет отсутствовать внутри полости. Если теперь заземлить данный проводник с полостью, то потенциал во всех точках полости будет равен нулю, т. е. полость полностью является изолированной от влияния внешних электростатических полей. На этом основана электростатическая защита — экранирование тел, например измерительных приборов, от влияния внешних электростатических полей. Для защиты вместо сплошного проводника может быть использована густая металлическая сетка, которая, также эффективна при наличии не только постоянных, но и переменных электрических полей.

Свойство зарядов располагаться на внешней поверхности проводника на практике используется для устройства электростатических генераторов, которые предназначены для накопления больших зарядов и достижения разности потенциалов в несколько миллионов вольт. Электростатический генератор, который изобретен американским физиком Р. Ван-де-Граафом (1901—1967), состоит из шарообразного полого проводника 1 (рис. 3), укрепленного на изоляторах 2. Движущаяся замкнутая лента 3 из прорезиненной ткани заряжается от источника напряжения с помощью системы остриев 4, которые соединены с одним из полюсов источника, второй полюс которого заземлен. Заземленная пластина 5 усиливает стекание зарядов с остриев на ленту. Другая система остриев 6 снимает заряды с ленты и передает их полому шару, и они переходят на его внешнюю поверхность. Значит, сфера постепенно получает большой заряд и удается достичь разности потенциалов в несколько миллионов вольт. Электростатические генераторы широко применяются в высоковольтных ускорителях заряженных частиц, а также в слаботочной высоковольтной технике.


Билет.

1. Как отмечалось ранее, при низких температурах и высоких давлениях уравнение Менделеева – Клапейрона для одного моля вещества PV=RT (5.2.1) дает существенные отклонения от значений, измеряемых на опыте.

Были сделаны многочисленные попытки найти уравнение состояния для реального вещества, которое могло бы охватить, если не все состояния вещества, то хотя бы газообразное и жидкое. Из множества предложенных уравнений наибольшей известностью пользуется уравнение Ван-дер-Ваальса:

 

  (5.2.2)

 

записанное для одного моля вещества. Для молей это уравнение имеет вид:

 

  (5.2.3)


Постоянные a и b определяются экспериментально и имеют различные значения для разного сорта молекул. Уравнение (5.1.2) не выводится, оно устанавливается введением в уже известное уравнение Менделеева – Клапейрона двух поправок. Чтобы обосновать их введение заметим, что в уравнении (5.1.2) объем означает объем сосуда, в котором содержится один моль газа. В случае идеального газа, состоящего из материальных точек, весь этот объем доступен для движения молекул. В реальном газе сами молекулы занимают некоторую часть объема сосуда, и эта часть недоступна для всех других молекул. Эту часть объема следует вычесть из объема. Тогда уравнение (5.1.2) приобретет вид

 

  (5.2.4)


Из последнего выражения видно, что поправка b равна тому объему, который занимал бы газ при бесконечно большом давлении, т. е. молекулы реального газа не могут сблизиться друг с другом до расстояния равного нулю, даже при бесконечно большом давлении. Поэтому введение поправки b означает приблизительный учет сил отталкивания между молекулами.

Как мы знаем, между молекулами действуют не только силы отталкивания, но и силы притяжения. Любая молекула, расположенная вблизи стенки сосуда AA' испытывает результирующую силу притяжения

 

  (5.2.5)

со стороны молекул, расположенных в сфере действия сил притяжения.

 

рис. 1

Таким образом, в результате действия сил притяжения давление на стенку со стороны газа будет меньше, по сравнению с тем давлением (5.2.4), которое испытала бы стенка, если бы сил притяжения между молекулами не было, т. е.

 

  (5.2.6)

 

Откуда находим уравнение Ван-дер-Ваальса:

 

  (5.2.7)

Поясним появление в формуле (5.2.9) добавочного давления. Пусть газ находится в цилиндре под невесомым поршнем. Внешнее давление стремится сжать газ, т. е. сблизить его молекулы. Если бы молекулы газа друг друга не притягивали, газ испытывал бы на себе одно только внешнее давление. Но взаимное притяжение молекул, как мы выяснили, также стремится приблизить молекулы друг к другу, т. е. действует в том же направлении, как и внешнее давление. Поэтому результат притяжения молекул сказывается в кажущемся увеличении внешнего давления на газ, как будто бы к величине давления на поршень прибавилось некоторое добавочное добавление.

Для исследования поведения реального газа рассмотрим изотермы Ван-дер-Ваальса — кривые зависимости р от Vm при заданных Т, определяемые уравнением Ван-дер-Ваальса (61.2) для моля газа. Эти кривые (рассматриваются для четырех различных температур; рис. 89) имеют довольно своеобразный характер. При высоких температурах (T > Tк) изотерма реального газа отличается от изотермы идеального газа только некоторым искажением ее формы, оставаясь монотонно спадающей кри­вой. При некоторой температуре Tк на изотерме имеется лишь одна точка перегиба К.

Эта изотерма называется критической, соответствующая ей температура Tк — крити­ческой температурой; точка перегиба К называется критической точкой; в этой точке касательная к ней параллельна оси абсцисс. Соответствующие этой точке объем Vк, и давление рк называются также критическими. Состояние с критическими парамет­рами (pк, Vк, Tк) называется критическим состоянием. При низких температурах (Т < Tк ) изотермы имеют волнообразный участок, сначала монотонно опускаясь вниз, затем монотонно поднимаясь вверх и снова монотонно опускаясь.

Для пояснения характера изотерм преобразуем уравнение Ван-дер-Ваальса (61.2) к виду

 

(62.1)

Уравнение (62.1) при заданных р и Т является уравнением третьей степени от­носительно Vm; следовательно, оно может иметь либо три вещественных корня, либо один вещественный и два мнимых, причем физический смысл имеют лишь веществен­ные положительные корни. Поэтому первому случаю соответствуют изотермы при низких температурах (три значения объема газа V1, V2 и V3 отвечают (символ «m» для простоты опускаем) одному значению давления р1), второму случаю — изотермы при высоких температурах.

Рассматривая различные участки изотермы при T< Тк (рис. 90), видим, что на участках 13 и 57 при уменьшении объема Vm давление р возрастает, что естествен­но. На участке 3—5 сжатие вещества приводит к уменьшению давления; практика же показывает, что такие состояния в природе не осуществляются. Наличие участка 3—5 означает, что при постепенном изменении объема вещество не может оставаться все время в виде однородной среды; в некоторый момент должно наступить скачкообразное изменение состояния и распад вещества на две фазы. Таким образом, истинная изотерма будет иметь вид ломаной линии 76—2—1. Часть 6–7 отвечает газообраз­ному состоянию, а часть 21 — жидкому. В состояниях, соответствующих горизон­тальному участку изотермы 6—2, наблюдается равновесие жидкой и газообразной фаз вещества. Вещество в газообразном состоянии при температуре ниже критической называется паром, а пар, находящийся в равновесии со своей жидкостью, называется насыщенным.

 

Данные выводы, следующие из анализа уравнения Ван-дер-Ваальса, были под­тверждены опытами ирландского ученого Т. Эндрюса (1813—1885), изучавшего изо­термическое сжатие углекислого газа. Отличие экспериментальных (Эндрюс) и теоретических (Ван-дер-Ваальс) изотерм заключается в том, что превращению газа в жидкость в первом случае соответствуют горизонтальные участки, а во втором — волнообразные.

 

Для нахождения критических параметров подставим их значения в уравнение (62.1) запишем (62.2)

(символ «m» для простоты опускаем). Поскольку в критической точке все три корня совпадают и равны Vк уравнение приводится к виду (62.3)

Или

Tax как уравнения (62.2) и (62.3) тождественны, то в них должны быть равны и коэф­фициенты при неизвестных соответствующих степеней. Поэтому можно записать (62.4)

Решая полученные уравнения, найдем

Если через крайние точки горизонтальных участков семейства изотерм провести линию, то получится колоколообразная кривая (рис. 91), ограничивающая область двухфазных состояний вещества. Эта кривая и критическая изотерма делят диаграмму р, Vm под изотермой на три области: под колоколообразной кривой располагается область двухфазных состояний (жидкость и насыщенный пар), слева от нее находится область жидкого состояния, а справа — область пара. Пар отличается от остальных газообразных состояний тем, что при изотермическом сжатии претерпевает процесс сжижения. Газ же при температуре выше критической не может быть превращен в жидкость ни при каком давлении.

Сравнивая изотерму Ван-дер-Ваальса с изотермой Эндрюса (верхняя кривая на рис. 92), видим, что последняя имеет прямолинейный участок 26, соответствующий двухфазным состояниям вещества. Правда, при некоторых условиях могут быть реализованы состояния, изображаемые участками ван-дер-ваальсовой изотермы 5—6 и 23. Эти неустойчивые состояния называются метастабильными. Участок 2—3 изображает перегретую жидкость, 5—6 пересыщенный пар. Обе фазы ограниченно устойчивы.

 

При достаточно низких температурах изотерма пересекает ось Vm, переходя в об­ласть отрицательных давлений (нижняя кривая на рис. 92). Вещество под отрицательным давлением находится в состоянии растяжения. При некоторых условиях такие состояния также реализуются. Участок 8—9 на нижней изотерме соответствует перегретой жидкости, участок 9—10 — растянутой жидкости.

2. Носителями тока в металлах являются свободные электроны, т. е. электроны, слабо связанные с ионами кристаллической решетки металла. Это представление о природе носителей тока в металлах основывается на электронной теории проводимости метал­лов, созданной немецким физиком П. Друде (1863—1906) и разработанной впоследствии нидерландским физиком X. Лоренцем, а также на ряде классических опытов, подтверждающих положения электронной теории.

Первый из таких опытов — опыт Рикке * (1901), в котором в течение года электрический ток пропускался через три последовательно соединенных с тщательно отшлифованными торцами металлических цилиндра (Сu, Аl, Сu) одинакового радиуса. Несмотря на то что общий заряд, прошедший через эти цилиндры, достигал огромного значения (»3, 5× 106 Кл), никаких, даже микроскопических, следов переноса вещества не обнаружилось. Это явилось экспериментальным доказательством того, что ионы в металлах не участвуют в переносе электричества, а перенос заряда в металлах осуществляется частицами, которые являются общими для всех металлов. Такими частицами могли быть открытые в 1897 г. английским физиком Д. Томсоном (1856—1940) электроны.

*К. Рикке (1845—1915) — немецкий физик.

 

Для доказательства этого предположения необходимо было определить знак и ве­личину удельного заряда носителей (отношение заряда носителя к его массе). Идея подобных опытов заключалась в следующем: если в металле имеются подвижные, слабо связанные с решеткой носители тока, то при резком торможении проводника эти частицы должны по инерции смещаться вперед, как смещаются вперед пассажиры, стоящие в вагоне при его торможении. Результатом смещения зарядов должен быть импульс тока; по направлению тока можно определить знак носителей тока, а зная размеры и сопротивление проводника, можно вычислить удельный заряд носителей. Идея этих опытов (1913) и их качественное воплощение принадлежат российским физикам С. Л. Мандельштаму (1879—1944) и Н. Д. Папалекси (1880—1947). Эти опы­ты в 1916 г. были усовершенствованы и проведены американским физиком Р. Толменом (1881—1948) и ранее шотландским физиком Б. Стюартом (1828—1887). Ими экспериментально доказано, что носители тока в металлах имеют отрицательный заряд, а их удельный заряд приблизительно одинаков для всех исследованных метал­лов. По значению удельного заряда носителей электрического тока и по определенному ранее Р. Милликеном элементарному электрическому заряду была определена их масса. Оказалось, что значения удельного заряда и массы носителей тока и электронов, движущихся в вакууме, совпадали. Таким образом, было окончательно доказано, что носителями электрического тока в металлах являютсясвободные электроны.

Существование свободных электронов в металлах можно объяснить следующим образом: при образовании кристаллической решетки металла (в результате сближения изолированных атомов) валентные электроны, сравнительно слабо связанные с атом­ными ядрами, отрываются от атомов металла, становятся «свободными» и могут перемещаться по всему объему. Таким образом, в узлах кристаллической решетки располагаются ионы металла, а между ними хаотически движутся свободные электро­ны, образуя своеобразный электронный газ, обладающий, согласно электронной теории металлов, свойствами идеального газа.

Электроны проводимости при своем движении сталкиваются с ионами решетки, в результате чего устанавливается термодинамическое равновесие между электронным газом и решеткой. По теории Друде—Лоренца, электроны обладают такой же энергией теплового движения, как и молекулы одноатомного газа. Поэтому, применяя выводы молекулярно-кинетической теории (см. (44.3)), можно найти среднюю скорость теплового движения электронов

которая для T=300 К равна 1, 1× 105 м/с. Тепловое движение электронов, являясь хаотическим, не может привести к возникновению тока.

При наложении внешнего электрического поля на металлический проводник кроме теплового движения электронов возникает их упорядоченное движение, т. е. возникает электрический ток. Среднюю скорость á vñ упорядоченного движения электронов мож­но оценить согласно формуле (96.1) для плотности тока: j=пeá vñ. Выбрав допустимую плотность тока, например для медных проводов 107 А/м2, получим, что при концент­рации носителей тока n = 8× 1028м–3 средняя скоростьá vñ упорядоченного движения электронов равна 7, 8× 10–4 м/с. Следовательно, á vñ < < á uñ, т. е. даже при очень боль­ших плотностях тока средняя скорость упорядоченного движения электронов, обуслов­ливающего электрический ток, значительно меньше их скорости теплового движения. Поэтому при вычислениях результирующую скорость á vñ + á uñ можно заменять скоростью теплового движения á uñ.

Казалось бы, полученный результат противоречит факту практически мгновенной передачи электрических сигналов на большие расстояния. Дело в том, что замыкание электрической цепи влечет за собой распространение электрического поля со скоростью с (c=3× 108м/с). Через время t=l/c (l — длина цепи) вдоль цепи установится стационарное электрическое поле и в ней начнется упорядоченное движение электро­нов. Поэтому электрический ток возникает в цепи практически одновременно с ее замыканием.

Билет


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 513; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.073 с.)
Главная | Случайная страница | Обратная связь