Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Теплоёмкость для различных состояний вещества ⇐ ПредыдущаяСтр 9 из 9
Понятие теплоёмкости определено как для веществ в различных агрегатных состояниях (твёрдых тел, жидкостей, газов), так и для ансамблей частиц и квазичастиц (в физике металлов, например, говорят о теплоёмкости электронного газа). Для примера, в молекулярно-кинетической теории газов показывается, что молярная теплоёмкость идеального газа с i степенями свободы при постоянном объёме (для одного моля идеального газа) равна: где R ≈ 8, 31 Дж/(моль·К) — универсальная газовая постоянная. А при постоянном давлении Удельные теплоёмкости многих веществ приведены в справочниках обычно для процесса при постоянном давлении. К примеру, удельная теплоёмкость жидкой воды при нормальных условиях — 4200 Дж/(кг·К); льда — 2100 Дж/(кг·К). Теория теплоёмкости Сравнение моделей Дебая и Эйнштейна для теплоёмкости твёрдого тела Существует несколько теорий теплоёмкости твердого тела: Закон Дюлонга — Пти и закон Джоуля — Коппа. Оба закона выведены из классических представлений и с определенной точностью справедливы лишь для нормальных температур (примерно от 15 °C до 100 °C). Квантовая теория теплоёмкостей Эйнштейна. Первое применение квантовых законов к описанию теплоёмкости. Квантовая теория теплоёмкостей Дебая. Содержит наиболее полное описание и хорошо согласуется с экспериментом. Теплоёмкость системы невзаимодействующих частиц (например, газа) определяется числом степеней свободы частиц.
25.2 Один из основных законов электродинамики был открыт в 1826 г. немецким учителем физики Георгом Омом. Он установил, что сила тока в проводнике пропорциональна разности потенциалов Рассмотрим неоднородный участок цепи, участок, содержащий источник ЭДС (т.е. участок, где действуют неэлектрические силы). Напряженность поля в любой точке цепи равна векторной сумме поля кулоновских сил и поля сторонних сил, т.е. Величина, численно равная работе по переносу единичного положительного заряда суммарным полем кулоновских и сторонних сил на участке цепи (1 – 2), называется напряжением на этом участке U12(рис. 7.4). Рис. 7.4
т.к. , или , тогда
Напряжение на концах участка цепи совпадает с разностью потенциалов только в случае, если на этом участке нет ЭДС, т.е. на однородном участке цепи. Запишем обобщенный закон Ома для участка цепи содержащей источник ЭДС:
Обобщенный закон Ома выражает закон сохранения энергии применительно к участку цепи постоянного тока. Он в равной мере справедлив как для пассивных участков (не содержащих ЭДС), так и для активных. В электротехнике часто используют термин падение напряжения – изменение напряжения вследствие переноса заряда через сопротивление
В замкнутой цепи: ; или где ; r – внутреннее сопротивление активного участка цепи (рис. 7.5). Тогда закон Ома для замкнутого участка цепи, содержащего источник ЭДС запишется в виде
Рис. 7.5
ЭДС Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура. ЭДС можно выразить через напряжённость электрического поля сторонних сил ( ). В замкнутом контуре ( ) тогда ЭДС будет равна: , где — элемент длины контура. ЭДС так же, как и напряжение, измеряется в вольтах. Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил не во всем контуре, а только на данном участке. ЭДС гальванического элемента есть работа сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому. Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории. Так, например, работа сторонних сил при перемещении заряда между клеммами тока вне самого источника равна нулю. ЭДС индукции Причиной электродвижущей силы может стать изменение магнитного поля в окружающем пространстве. Это явление называется электромагнитной индукцией. Величина ЭДС индукции в контуре определяется выражением где — поток магнитного поля через замкнутую поверхность , ограниченную контуром. Знак «− » перед выражением показывает, что индукционный ток, созданный ЭДС индукции, препятствует изменению магнитного потока в контуре (см. правило Ленца).\
Электри́ ческое напряже́ ние между точками A и B электрической цепи или электрического поля — физическая величина, значение которой равно отношению работы электрического поля, совершаемой при переносе пробного электрического заряда из точки A в точку B, к величине пробного заряда. При этом считается, что перенос пробного заряда не изменяет распределения зарядов на источниках поля (по определению пробного заряда). В потенциальном электрическом поле эта работа не зависит от пути, по которому перемещается заряд. В этом случае электрическое напряжение между двумя точками совпадает с разностью потенциалов между ними. Альтернативное определение — — интеграл от проекции поля эффективной напряжённости поля (включающего сторонние поля) на расстояние между точками A и B вдоль заданной траектории, идущей из точки A в точку B. В электростатическом поле значение этого интеграла не зависит от пути интегрирования и совпадает с разностью потенциалов. Единицей измерения напряжения в системе СИ является вольт Билет Количество теплоты, полученное системой, идет на изменение ее внутренней энергии и совершение работы против внешних сил. Изменение внутренней энергии системы при переходе её из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе, то есть, оно зависит только от начального и конечного состояния системы и не зависит от способа, которым осуществляется этот переход. Это определение особенно важно для химической термодинамики[2] (ввиду сложности рассматриваемых процессов). Иными словами, внутренняя энергия является функцией состояния. В циклическом процессе внутренняя энергия не изменяется. - закон сохранения энергии для термодинамич. системы, согласно к-рому работа может совершаться только за счёт теплоты или к.-л. др. формы энергии. Поэтомуработу и кол-во теплоты можно измерять в одних единицах - Джоулях (1 Дж)П. н. т. сформулировано как закон природы Ю. < Р. Майером в 1842 и установлено экспериментально Дж. Джоулем в 1843. П. н. т. можно формулировать как невозможность существования вечного двигателя 1-го рода, к-рый совершал бы работу, не черпая энергию изк.-л. источника. Q = U2-U1 + A; прибесконечно малом изменении состояния системы: Теплоёмкость тела (обычно обозначается латинской буквой C) — физическая величина, определяющая отношение бесконечно малого количества теплотыδ Q, полученного телом, к соответствующему приращению его температуры δ T: Единица измерения теплоёмкости в системе СИ — Дж/К. Cp = Cv + R В металлах! Металлы состоят из положительно заряженных ионов, находящихся в узлах кристаллической решетки и совокупности свободных электронов. Вне электрического поля свободные электроны движутся хаотически, подобно молекулам идеального газа, а потому рассматриваются в классической электронной теории как электронный газ. Под действием внешнего электрического поля меняется характер движения свободных электронов внутри металла. Электроны, продолжая хаотичные движения, вместе с тем смещаются в направлении действия сил электрического поля. Следовательно, электрический ток в металлах - это упорядоченное движение электронов. В газах! При нормальных условиях газы состоят из нейтральных молекул, а поэтому являются диэлектриками. Так как для получения электрического тока необходимо наличие заряженных частиц, то молекулы газа следует ионизировать (оторвать электроны от молекул). Для ионизации молекул необходимо затратить энергию - энергию ионизации, количество которой зависит от рода вещества. Так, энергия ионизации минимальна для атомов щелочных металлов, максимальна - для инертных газов. Ионизировать молекулы можно при нагревании газа, при облучении его различного рода лучами. Благодаря дополнительной энергии возрастает скорость движения молекул, нарастает интенсивность их теплового движения и при соударении отдельные молекулы теряют электроны, превращаясь в положительно заряженные ионы. Электроны, оторвавшись от молекулы могут присоединятся к нейтральным молекулам, образуя при этом отрицательно заряженные ионы. Следовательно, при ионизации появляются три типа носителей зарядов: положительные ионы, отрицательные ионы и электроны.
В вакууме! отсутствуют заряженные частиц, а следовательно, он является диэлектриком. Т.е. необходимо создать определенные условия, которые помогут получить заряженные частицы. Свободные электроны есть в металлах. При комнатной температуре они не могут покинуть металл, т. к. удерживаются в нем силами кулоновского притяжения со стороны положительных ионов. Для преодоления этих сил электрону необходимо затратить определенную энергию, которая называетсяработой выхода. Энергию, большую или равную работе выхода, электроны могут получить при разогреве металла до высоких температур. При нагревании металла количество электронов с кинетической энергией, большей работы выхода, увеличивается, поэтому из металла вылетает большее количество электронов. Испускание электронов из металлов при его нагревании называют термоэлектронной эмиссией. Для осуществления термоэлектронной эмиссии в качестве оного из электродов используют тонкую проволочную нить из тугоплавкого металла (нить накала). Подключенная к источнику тока нить раскаляется и с ее поверхности вылетают электроны. Вылетевшие электроны попадают в электрическое поле между двумя электродами и начинают двигаться направленно, создавая электрический ток. Явление термоэлектронной эмиссии лежит в основе принципа действия электронных ламп: вакуумного диода, вакуумного триода. Вакуумный диод Вакуумный триод
Билет 1)Изохорный процесс (V=const). Диаграмма этого процесса (изохора) в координатах р, V изображается прямой, параллельной оси ординат (рис. 1), где процесс 1—2 есть изохорное нагревание, а 1—3 — изохорное охлаждение. При изохорном процессе газ не совершает работы над внешними телами, т. е. откуда 2) Электрическая ёмкость — характеристика проводника, мера его способности накапливать электрический заряд. В теории электрических цепей ёмкостью называют взаимную ёмкость между двумя проводниками; параметр ёмкостного элемента электрической схемы, представленного в виде двухполюсника. Такая ёмкость определяется как отношение величины электрического заряда к разности потенциалов между этими проводниками. В Международной системе единиц (СИ) ёмкость измеряется в фарадах. В системе СГС в сантиметрах. Для одиночного проводника ёмкость равна отношению заряда проводника к его потенциалу в предположении, что все другие проводникибесконечно удалены и что потенциал бесконечно удалённой точки принят равным нулю. В математической форме данное определение имеет вид где — заряд, — потенциал проводника. Ёмкость определяется геометрическими размерами и формой проводника и электрическими свойствами окружающей среды (её диэлектрической проницаемостью) и не зависит от материала проводника. К примеру, ёмкость проводящего шара (или сферы) радиуса R равна (в системе СИ): где ε 0 — электрическая постоянная, ε — относительная диэлектрическая проницаемость. Энергия заряженного уединенного проводника. Пусть имеется уединенный проводник, заряд, емкость и потенциал которого соответственно равны Q, С, j. Увеличим заряд этого проводника на dQ. Для этого необходимо перенести заряд dQ из бесконечности на уединенный проводник, затратив на это работу, равную Чтобы зарядить тело от нулевого потенциала до j, необходимо совершить работу Энергия заряженного проводника равна той работе, которую необходимо совершить, чтобы зарядить этот проводник: Билет 28 Адиабати́ ческий, или адиаба́ тный проце́ сс (от др.-греч. ἀ δ ι ά β α τ ο ς — «непроходимый») — термодинамический процесс в макроскопической системе, при котором система не обменивается тепловой энергией с окружающим пространством . Серьёзное исследование адиабатических процессов началось в XVIII веке[1]. Адиабатический процесс является частным случаем политропного процесса, так как при нём теплоёмкость газа равна нулю и, следовательно, постоянна[2]. Адиабатические процессы обратимы только тогда, когда в каждый момент времени система остаётся равновесной (например, изменение состояния происходит достаточно медленно) и изменения энтропии не происходит. Некоторые авторы (в частности, Л. Д. Ландау) называли адиабатическими только квазистатические адиабатические процессы[3]. Адиабатический процесс для идеального газа описывается уравнением Пуассона. Линия, изображающая адиабатный процесс на термодинамической диаграмме, называется адиабатой. Адиабатическими можно считать процессы в целом ряде явлений природы. Так же такие процессы получили ряд применений в технике. Уравнение политропы НЕ ЗНАЮ Напряженность электростатического поля, согласно (88.5), зависит от свойств среды: в однородной изотропной среде напряженность поля Е обратно пропорциональна e. Вектор напряженности Е, переходя через границу диэлектриков, претерпевает скачкообразное изменение, создавая тем самым неудобства при расчетах электростатических полей. Поэтому оказалось необходимым помимо вектора напряженности характеризовать поле еще вектором электрического смещения, который для электрически изотропной среды, по определению, равен (89.1)Используя формулы (88.6) и (88.2), вектор электрического смещения можно выразить как (89.2)Единица электрического смещения — кулон на метр в квадрате (Кл/м2). Рассмотрим, с чем можно связать вектор электрического смещения. Связанные заряды появляются в диэлектрике при наличии внешнего электростатического поля, создаваемого системой свободных электрических зарядов, т. е. в диэлектрике на электростатическое поле свободных зарядов накладывается дополнительное поле связанных зарядов. Результирующее поле в диэлектрике описывается вектором напряженности Е, и потому он зависит от свойств диэлектрика. Вектором D описывается электростатическое поле, создаваемое свободными зарядами. Связанные заряды, возникающие в диэлектрике, могут вызвать, однако, перераспределение свободных зарядов, создающих поле. Поэтому вектор D характеризует электростатическое поле, создаваемое свободными зарядами (т. е. в вакууме), но при таком их распределении в пространстве, какое имеется при наличии диэлектрика. Аналогично, как и поле Е, поле D изображается с помощью линий электрического смещения, направление и густота которых определяются точно так же, как и для линий напряженности. Линии вектора Е могут начинаться и заканчиваться на любых зарядах — свободных и связанных, в то время как линии вектора D — только на свободных зарядах. Через области поля, где находятся связанные заряды, линии вектора D проходят не прерываясь. Для произвольной замкнутой поверхности S поток вектора D сквозь эту поверхность где Dn — проекция вектора D на нормаль n к площадке dS. Теорема Гаусса для электростатического поля в диэлектрике: (89.3) т. е. поток вектора смещения электростатического поля в диэлектрике сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности свободных электрических зарядов. В такой форме теорема Гаусса справедлива для электростатического поля как для однородной и изотропной, так и для неоднородной и анизотропной сред. Для вакуума Dn = e0En (e =1), тогда поток вектора напряженности Е сквозь произвольную замкнутую поверхность (ср. с (81.2)) равен Так как источниками поля Е в среде являются как свободные, так и связанные заряды, то теорему Гаусса (81.2) для поля Е в самом общем виде можно записать как где — соответственно алгебраические суммы свободных и связанных зарядов, охватываемых замкнутой поверхностью S. Однако эта формула неприемлема для описания поля Е в диэлектрике, так как она выражает свойства неизвестного поля Е через связанные заряды, которые, в свою очередь, определяются им же. Это еще раз доказывает целесообразность введения вектора электрического смещения. Билет Второе начало термодинамики — физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами. Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая, что коэффициент полезного действия не может равняться единице, поскольку для кругового процесса температура холодильника не может равняться абсолютному нулю. Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения. Энтропи́ я (от др.-греч. ἐ ν τ ρ ο π ί α — поворот, превращение) — в естественных науках мера беспорядка системы, состоящей из многих элементов. В частности, в статистической физике — мера вероятности осуществления какого-либо макроскопического состояния; в теории информации — мера неопределённости какого-либо опыта (испытания), который может иметь разные исходы, а значит, и количество информации; в исторической науке, для экспликации феномена альтернативности истории (инвариантности и вариативности исторического процесса). Энтропия в информатике — степень неполноты, неопределённости знаний. Понятие энтропии впервые было введено Клаузиусом в термодинамике в 1865 году для определения меры необратимого рассеивания энергии, меры отклонения реального процесса от идеального. Определённая как сумма приведённых теплот, она является функцией состояния и остаётся постоянной при обратимых процессах, тогда как в необратимых — её изменение всегда положительно. 2) Поляризация диэлектриков — явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей, обычно под воздействием внешнего электрического поля, иногда под действием других внешних сил или спонтанно. Поляризацию диэлектриков характеризует вектор электрической поляризации. Физический смысл вектора электрической поляризации — это дипольный момент, отнесенный к единице объема диэлектрика. Иногда вектор поляризации коротко называют просто поляризацией. Вектор поляризации применим для описания макроскопического состояния поляризации не только обычных диэлектриков, но и сегнетоэлектриков, и, в принципе, любых сред, обладающих сходными свойствами. Он применим не только для описания индуцированной поляризации, но и спонтанной поляризации (у сегнетоэлектриков). Поляризация — состояние диэлектрика, которое характеризуется наличием электрического дипольного момента у любого (или почти любого) элемента его объема. Различают поляризацию, наведенную в диэлектрике под действием внешнего электрического поля, и спонтанную (самопроизвольную) поляризацию, которая возникает всегнетоэлектриках в отсутствие внешнего поля. В некоторых случаях поляризация диэлектрика (сегнетоэлектрика) происходит под действием механических напряжений, сил трения или вследствие изменения температуры. Поляризация не изменяет суммарного заряда в любом макроскопическом объеме внутри однородного диэлектрика. Однако она сопровождается появлением на его поверхности связанных электрических зарядов с некоторой поверхностной плотностью σ. Эти связанные заряды создают в диэлектрике дополнительное макроскопическое поле с напряженностью Е1, направленное против внешнего поля с напряженностью Е0. Результирующая напряженность поля Е внутри диэлектрика Е=Е0-Е1. Билет 30 2) Твердые диэлектрики - это чрезвычайно широкий класс веществ, содержащий вещества с радикально различающимися электрическими, теплофизическими, механическими свойствами. Например, диэлектрическая проницаемость меняется от значения, незначительно превышающего 1, до более чем 50000, в зависимости от типа диэлектриков: неполярный, полярный, сегнетоэлектрик. В главе 1 приводились определения различных типов диэлектриков. Вкратце коснемся этих определений применительно к твердым диэлектрикам. Неполярный диэлектрик - вещество, содержащее молекулы с преимущественно ковалентной связью. Полярный диэлектрик - вещество, содержащее дипольные молекулы или группы, или имеющее ионы в составе структуры. Сегнетоэлектрик - вещество, имеющее в составе области со спонтанной поляризацией. Механизмы поляризации у них резко различаются: - чисто электронная поляризация у неполярных диэлектриков типа полиэтилена, полистирола, при этом e-мала, не более 3, диэлектрические потери тоже малы; - ионная поляризация у ионных кристаллов типа NaCl или дипольная у полярных диэлектриков типа льда, при этом e может находиться в пределах от 3-4 до 100, диэлектрические потери могут быть весьма значительны, в особенности на частотах вращения диполей и других резонансных частотах; - доменная поляризация у сегнетоэлектриков - при этом e максимальна и может достигать 10000-50000, диэлектрические потери могут быть весьма значительны, в особенности на резонансных частотах и в области повышенных частот. Особенности механизмов проводимости в твердых диэлектриках - концентрация носителей очень мала, подвижность ионов в гомогенных материалах очень мала, подвижность электронов в чистых материалах велика, в технически чистых - мала. Механизмы электропроводности различны в разных веществах. Ионная проводимость реализуется у полидисперсных диэлектриков (картон, бумага, гетинакс, дерево) и ионных кристаллов. В первом случае ионы передвигаются по границам раздела, образованным слипшимися дисперсными частицами. Появление носителей заряда сильно связано с влажностью этих материалов и определяется, как рассматривалось в лекциях 2 и 9 диссоциацией примесей и полярных групп основного вещества на поверхности раздела. В случае ионных кристаллов, в проводимости участвуют ионы основного вещества, примесей, дефекты структуры. Электронная проводимость реализуется у титанатов бария, стронция и т.д., электронная, дырочная и ионная проводимость у полимеров.
Билет 26. 1.Внутренняя энергия системы может изменяться в результате различных процессов: совершения над системой работы (при сжимании газа его температура повышается, следовательно, изменяется внутренняя энергия), сообщения системе количества теплоты (энергия передается системе в процессе теплообмена). количество теплоты Δ Q, переданное системе, идет на изменение ее внутренней энергии Δ U и на совершение системой работы A. где δ Q - бесконечно малое количество теплоты (не является полным дифференциалом), dU - бесконечно малое изменение внутренней энергии системы (полный дифференциал), δ A - элементарная работа (не является полным дифференциалом).
В системе СИ: [c]=Дж/кг·К, [C]=Дж/моль·К. где M - молярная масса вещества.
Сообщение телу теплоты вызывает изменение его состояния и в общем случае сопровождается изменением температуры. Было замечено, что для нагрева до одной и той же температуры двух различных тел одинаковой массы и в одинаковых условиях требуется различное количество теплоты. Следовательно, существует какое-то свойство тела, определяющее изменение его температуры в процессе подвода или отвода теплоты. Это свойство называют теплоемкостью тела. Таким образом, теплоемкость тела – это величина, характеризующая способность тела изменять свою температуру с подводом или отводом теплоты. Она равна количеству теплоты, которое надо подвести к телу, чтобы изменить его температуру на 1 К:
Cp = Cv + R Оно показывает, что расширение моля идеального газа при постоянном давлении и изменении его температуры на 1 Кельвин требует дополнительного, по сравнению с изобарическим расширением, количества теплоты, необходимого для совершения работы. Это значение равно универсальной газовой постоянной....; )
2. § 102. Элементарная классическая теория электропроводности металлов Носителями тока в металлах являются свободные электроны, т. е. электроны, слабо связанные с ионами кристаллической решетки металла. Это представление о природе носителей тока в металлах основывается на электронной теории проводимости металлов, созданной немецким физиком П. Друде (1863—1906) и разработанной впоследствии нидерландским физиком X. Лоренцем, а также на ряде классических опытов, подтверждающих положения электронной теории. Первый из таких опытов — опыт Рикке* (1901), в котором в течение года электрический ток пропускался через три последовательно соединенных с тщательно отшлифованными торцами металлических цилиндра (Сu, Аl, Сu) одинакового радиуса. Несмо |
Последнее изменение этой страницы: 2017-03-14; Просмотров: 867; Нарушение авторского права страницы