Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Непротиворечивость теории относительности
Теория относительности является логически непротиворечивой теорией. Это означает, что из её исходных положений нельзя логически вывести некоторое утверждение одновременно с его отрицанием. Поэтому множество так называемых парадоксов (подобных парадоксу близнецов) являются кажущимися. Они возникают в результате некорректного применения теории к тем или иным задачам, а не в силу логической противоречивости СТО. Справедливость теории относительности, как и любой другой физической теории, в конечном счёте, проверяется эмпирически. Кроме этого, логическая непротиворечивость СТО может быть доказана аксиоматически. Например, в рамках группового подхода [18] [19] [20] [21] [22] показывается, что преобразования Лоренца могут быть получены на основе подмножества аксиом классической механики. Этот факт сводит доказательство непротиворечивости СТО к доказательству непротиворечивости классической механики. Действительно, если следствия из более широкой системы аксиом являются непротиворечивыми, то они тем более будут непротиворечивыми при использовании только части аксиом [23]. С точки зрениялогики противоречия могут возникать, когда к уже существующим аксиомам добавляется новая аксиома, не согласующаяся с исходными. В аксиоматическом построении СТО, описанном выше, этого не происходит, поэтому СТО является непротиворечивой теорией[10]. Преобразование Лоренца (лоренцево преобразование) псевдоевклидова векторного пространства — это линейное преобразование , сохраняющее индефинитноескалярное произведение векторов. Это означает, что для любых двух векторов выполняется равенство где треугольными скобками обозначено индефинитное скалярное произведение в псевдоевклидовом пространстве . Аналогично, преобразование Лоренца (лоренцево преобразование) псевдоевклидова аффинного пространства — это аффинное преобразование, сохраняющее расстояние между точками этого пространства (это расстояние определяется как длина вектора, соединяющего данные точки, с помощью индефинитного скалярного произведения). Общие свойства · Так как любое аффинное преобразование является композицией параллельного переноса (очевидным образом, сохраняющего расстояние между точками) и преобразования, имеющего неподвижную точку, то группа преобразований Лоренца аффинного пространства (группа Пуанкаре) получается из группы преобразований Лоренца векторного пространства (группа Лоренца) такой же размерности путём добавления к ней всевозможных параллельных переносов. · Если в псевдоевклидовом векторном пространстве выбран некоторый базис , то для индефинитного скалярного произведения определена матрица Грама . Тогда матрица преобразования Лоренца удовлетворяет соотношению где звёздочка означает транспонирование матрицы. И обратно, любая матрица , удовлетворяющая соотношению , является матрицей преобразования Лоренца. Всегда можно выбрать базис таким образом, что индефинитное скалярное произведение имеет вид и в равенстве матрица ― диагональная с элементами (первые ) и (последние ). · Из соотношения следует, что, как и в случае ортогонального преобразования, определитель или . · Если подпространство инвариантно относительно лоренцева преобразования , то и его ортогональное (в смысле данного индефинитного скалярного произведения) дополнение тоже инвариантно относительно преобразования , причем . Однако, в отличие от ортогональных преобразований евклидовых пространств, равенство , где символ означает прямую сумму подпространств, вообще говоря, не имеет места (оба подпространства и могут содержать одни и те же ненулевые изотропные векторы, то есть , так как любой изотропный вектор ортогонален сам себе).[1]
Преобразования Лоренца в физике Преобразованиями Лоренца в физике, в частности, в специальной теории относительности (СТО), называются преобразования, которым подвергаются
Билет 16. |
Последнее изменение этой страницы: 2017-03-14; Просмотров: 408; Нарушение авторского права страницы