Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Электрический ток. Условия необходимые для возникновения и существования электрического тока.



Если к изолированному проводнику приложить электрическое поле , то на свободные заряды q в проводнике будет действовать сила =q . В результате в проводнике возникает упорядоченное перемещение свободных зарядов, возникает электрический ток.

 

Непрерывное упорядоченное движение свободных носителей электрического заряда называется электрическим током. За направление электрического тока принято направление движения положительных свободных зарядов.

Условия, необходимые для существования электрического тока:

- наличие свободных заряженных частиц;

- наличие электрического поля;

– замкнутость цепи.

 

Действие тока, сопровождающие его протекание:

1) Тепловое. Проводник, по которому течет ток, нагревается. Тепловое действие проявляется практически всегда. Исключение составляет явление сверхпроводимости, тепловое действие тока не проявляется также при протекании тока в вакууме.

2) Химическое. Электрический ток изменяет химический состав проводника. Наблюдается при протекании тока в электролитах.

3) Магнитное. Ток оказывает силовое воздействие на соседние токи и на магнитные тела. Магнитное воздействие на соседние точки и на магнитные тела. Магнитное действие в отличие от химического и от теплового явления является основным, так как проявляется у всех без исключения проводников(наблюдается всегда).

4)

Электрический ток всегда в проводниках (металлах) обусловлен наличием свободных электронов.

Положительно заряженные ионы металла образуют кристаллическую решетку. “Газ свободных электронов” образуется за счет одного или нескольких электронов, отданных каждым атомом. Свободные электроны способны блуждать по всему объему кристалла.

Силой тока называется скалярная физическая величина, численно равная электрическому заряду, проходящему через поперечное сечение проводника за единицу времени:

I= .

Если величина силы тока и его направление не меняются с течением времени, то ток называется постоянным и I=const= .

Единица силы тока-1 Ампер. Ампер в системе СИ является основной единицей и определяется из магнитного взаимодействия двух параллельных прямолинейных проводников, по которым в одном направлении течёт ток силой 1 А, расположенных на расстоянии 1 м один от другого в вакууме, вызывает между этими проводниками силу взаимодействия, равную 2*10-7 Н на каждый метр длины.

Сила тока зависит от заряда частицы e, концентрации n, скорости частиц v и площади сечения проводника S:

 

I= = = , где q=eN; n-концентрация частиц; V=vtS содержится N=nV частиц.

Плотностью тока называется векторная величина, численно равная силе тока, приходящегося на единицу площади, ориентированной перпендикулярно току: .

Вектор j направлен вдоль тока по вектору напряженности электрического поля в проводнике. В системе СИ плотность тока измеряется в А/м2 . Для постоянного тока

Билет 25.1

Первое начало термодинамики — один из трёх основных законов термодинамики, представляет собой закон сохранения энергии для термодинамических систем.

Первое начало термодинамики было сформулировано в середине XIX века в результате работ немецкого учёного Ю. Р. Майера, английского физика Дж. П. Джоуля и немецкого физика Г. Гельмгольца[1]. Согласно первому началу термодинамики, термодинамическая система может совершать работу только за счёт своей внутренней энергии или каких-либо внешних источников энергии. Первое начало термодинамики часто формулируют как невозможность существования вечного двигателя первого рода, который совершал бы работу, не черпая энергию из какого-либо источника.

Первое начало термодинамики

 

В термодинамике широко используются понятия молярной теплоемкости при постоянном объеме CV и молярной теплоемкости при постоянном давлении Cp. В идеальном газе они удовлетворяют уравнению Майера:

Cp – CV = R.

Теплоемкость одного моля одноатомного идеального газа при постоянном объеме равна , двухатомного – , многоатомного – 3R.

Внутренняя энергия идеального газа прямо пропорциональна его абсолютной температуре:

U = CVT.

Работа Δ A, совершаемая газом, определяется давлением газа и изменением его объема:

Δ A = pΔ V.

 

Рисунок 2.3.1. Если давление газа в процессе совершения работы изменяется, то работа может быть найдена по площади под графиком.

 

Рисунок 2.3.2. Работа газа зависит от пути, по которому газ переходит из состояния 1 в состояние 2.

 

Первое начало термодинамики. Количество теплоты, полученное системой, идет на изменение ее внутренней энергии и на совершение работы над внешними телами:

Q = Δ U + A.

В изохорном процессе газ работы не совершает, и Δ U = Q. В изобарном процессе A = pΔ V = p (V2 – V1). В изотермическом процессе Δ U = 0, и A = Q; вся теплота, переданная телу, идет на работу над внешними телами. Графически работа равна площади под кривой процесса на плоскости p, V.

Рисунок 2.3.3. Первое начало термодинамики для изохорного процесса.

 

Рисунок 2.3.4. Первое начало термодинамики для изобарного процесса.

 

Рисунок 2.3.5. Первое начало термодинамики для изотермического процесса.

 

Рисунок 2.3.6. Первое начало термодинамики для адиабатного процесса.

Адиабатным называется квазистатический процесс, при котором системе не передается тепло из окружающей среды: Q = 0. В адиабатном процессе вся работа совершается за счет внутренней энергии газа.

Теплоёмкость тела (обычно обозначается латинской буквой C) — физическая величина, определяющая отношение бесконечно малого количества теплоты δ Q, полученного телом, к соответствующему приращению его температуры δ T:

Единица измерения теплоёмкости в системе СИ — Дж/К.

Удельная теплоёмкость

Удельной теплоёмкостью называется теплоёмкость, отнесённая к единичному количеству вещества. Количество вещества может быть измерено в килограммах, кубических метрах и молях. В зависимости от того, к какой количественной единице относится теплоёмкость, различают массовую, объёмную и молярную теплоёмкость.

Массовая теплоёмкость (С) — это количество теплоты, которое необходимо подвести к единице массы вещества, чтобы нагреть его на единицу температуры. В СИ измеряется в джоулях на килограмм на кельвин (Дж·кг− 1·К− 1).

Объёмная теплоёмкость (С′ ) — это количество теплоты, которое необходимо подвести к единице объёма вещества, чтобы нагреть его на единицу температуры. В СИ измеряется в джоулях на кубический метр на кельвин (Дж·м− 3·К− 1).

Молярная теплоёмкость (Сμ ) — это количество теплоты, которое необходимо подвести к 1 молю вещества, чтобы нагреть его на единицу температуры. В СИ измеряется в джоулях на моль на кельвин (Дж/(моль·К)).


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 1399; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.013 с.)
Главная | Случайная страница | Обратная связь