Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Согласование единиц измерения



Чтобы измерения, выполненные в различных ИСО, можно было между собой сравнивать, необходимо провести согласование единиц измерения между системами отсчёта. Так, единицы длины могут быть согласованы при помощи сравнения эталонов длины в перпендикулярном направлении к относительному движению инерциальных систем отсчёта[11]. Например, это может быть кратчайшее расстояние между траекториями двух частиц, движущихся параллельно осям x и x' и имеющих различные, но постоянные координаты (y, z) и (y', z'). Поэтому при относительном движении систем вдоль оси x можно считать, что y'=y, z'=z.

Для согласования единиц измерения времени можно использовать идентично устроенные часы, например, атомные. Другой способ согласования единиц времени — это соглашение о некотором значении относительной скорости систем отсчёта. Если начало системы S' (x'=0) движется со скоростью v вдоль оси x системы S, то его траектория в этой системе будет иметь вид x=vt. Аналогично начало системы отсчёта S (x=0) движется относительно S' со скоростью -v, поэтому имеет траекторию x'=-vt'. При этом событие совпадения начал отсчёта систем выбирается за начальный момент времени (t'=t=0, когда x'=x=0). Эти соглашения позволяют записать преобразования в следующем виде:

где коэффициенты , зависят от относительной скорости систем отсчёта и для своего определения требуют дополнительных предположений.

Изотропность пространства

Пространство в инерциальных системах отсчёта предполагается изотропным (нет выделенных направлений). Это приводит к тому, что является чётной функцией скорости: .

Рассмотрим, например, измерение длины некоторого объекта (линейки), неподвижного в системе отсчёта S'. Если одновременно в системе S измерить координаты «начала» и «конца» линейки, то её длина не должна зависеть от направления (знака) скорости , откуда следует, что функция является чётной.

32. Преобразование и сложение скоростей.

Сложение скоростей

При рассмотрении сложного движения (то есть когда точка или тело движется в одной системе отсчёта, а она движется относительно другой) возникает вопрос о связи скоростей в 2 системах отсчёта.

Классическая механика

В классической механике абсолютная скорость точки равна векторной сумме её относительной и переносной скоростей:

Простым языком: Скорость движения тела относительно неподвижной системы отсчёта равна векторной сумме скорости этого тела относительно подвижной системы отсчета и скорости самой подвижной системы отсчета относительно неподвижной системы.

Релятивистская механика

В XIX веке классическая механика столкнулась с проблемой распространения этого правила сложения скоростей на оптические (электромагнитные) процессы. По существу произошёл конфликт между двумя идеями классической механики, перенесёнными в новую область электромагнитных процессов.

Например, если рассмотреть пример с волнами на поверхности воды из предыдущего раздела и попробовать обобщить на электромагнитные волны, то получится противоречие с наблюдениями (см., например, опыт Майкельсона).

Классическое правило сложения скоростей соответствует преобразованию координат от одной системы осей к другой системе, движущиеся относительно первой без ускорения. Если при таком преобразовании мы сохраняем понятие одновременности, то есть сможем считать одновременными два события не только при их регистрации в одной системе координат, но и во всякой другой инерциальной системе, то преобразования называются галилеевыми. Кроме того, при галилеевых преобразованиях пространственное расстояние между двумя точками — разница между их координатами в одной инерциальной системе осчёта — всегда равно их расстоянию в другой инерциальной системе.

Вторая идея — принцип относительности. Находясь на корабле, движущимся равномерно и прямолинейно, нельзя обнаружить его движение какими-то внутренними механическими эффектами. Распространяется ли этот принцип на оптические эффекты? Нельзя ли обнаружить абсолютное движение системы по вызванным этим движением оптическим или, что то же самое электродинамическими эффектами? Интуиция (довольно явным образом связанная с классическим принципом относительности) говорит, что абсолютное движение нельзя обнаружить какими бы то ни было наблюдениями. Но если свет распространяется с определённой скоростью относительно каждой из движущихся инерциальных систем, то эта скорость изменится при переходе от одной системы к другой. Это вытекает из классического правила сложения скоростей. Говоря математическим языком, величина скорости света не будет инвариантна относительно галлилеевых преобразованиям. Это нарушает принцип относительности, вернее, не позволяет распространить принцип относительности на оптические процессы. Таким образом электродинамика разрушила связь двух, казалось бы, очевидных положений классической физики — правила сложения скоростей и принципа относительности. Более того, эти два положения применительно к электродинамике оказались несовместимыми.

Теория относительности даёт ответ на этот вопрос. Она расширяет понятие принципа относительности, распространяя его и на оптические процессы. Правило сложение скоростей при этом не отменяется совсем, а лишь уточняется для больших скоростей с помощью преобразования Лоренца:


Можно заметить, что в случае, когда , преобразования Лоренца переходят в преобразования Галилея. Это говорит о том, что специальная теория относительности совпадает с механикой Ньютона при скоростях, малых по сравнению со скоростью света. Это объясняет, каким образом сочетаются эти две теории — первая является уточнением второй.


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 469; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.012 с.)
Главная | Случайная страница | Обратная связь