Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
BASICS OF MECHANICAL ENGINEERINGСтр 1 из 19Следующая ⇒
САВЕЛЛО Е. В. BASICS OF MECHANICAL ENGINEERING ENGLISH LANGUAGE FOR ENGINEERS ОСНОВЫ МАШИНОСТРОЕНИЯ. АНГЛИЙСКИЙ ЯЗЫК ДЛЯ ИНЖЕНЕРОВ Учебное пособие
Ставрополь
С 12 Рецензенты: Митрофаненко Л. М., доцент, кандидат филологических наук, зав. каф. иностранных языков СевКавГТУ.
Савелло, Е. В. С 12 Основы машиностроения. Английский язык для инженеров: учебное пособие по дисциплине «Английский язык» / Е. В. Савелло. – Ставрополь: СКФУ, 2012. – 199 с. Предлагаемое вашему вниманию учебное пособие по дисциплине «Английский язык» составлено в соответствии с Государственным образовательным стандартом высшего профессионального образования, рабочим учебным планом и программами дисциплины «Английский язык» для студентов факультета строительства, транспорта и машиностроения. Цель данного пособия – помощь в развитии навыков и умений самостоятельного чтения оригинальной литературы по специальности, ведения научной беседы, реферирования и аннотирования, накопление узкоспециальной лексики, предваряющих переход к изучению студентами курсов специальных дисциплин на английском языке. Учебное пособие включает в себя тексты, упражнения, грамматический справочник и словарь профессиональной лексики. Учебное пособие может быть использовано для аудиторных занятий и для самостоятельной работы студентов специальности «Конструкторско-технологическое обеспечение машиностроительных производств» факультета строительства, транспорта и машиностроения.
©Е. В Савелло, 2012 ©ФГА ОУ ВПО «Северо-Кавказский федеральный университет», 2012
UNIT 1 TEXT 1. MY FUTURE PROFESSION I study at North Caucasus Federal University in Stavropol. My speciality is Mechanical engineering. Mechanical engineering is very broad field of engineering that involves the application of physical principles for analysis, design, manufacturing, and maintenance of mechanical systems. Students acquire profound general, engineering and special technological and designer’s training. Specialized training includes theoretical bases of mechanical engineering processes, design of technological processes including essential processes and their sequence, designing flexible technological systems and appliances, mathematical modeling of technological processes, efficient application of computers in designing and manufacturing (CAD / CAM) designing and control of automated and non-automated manufacturing enterprises. Professional skills and qualifications of specialists are based on sophisticated teaching methods, studies of latest discoveries in science and technology, both national and foreign experience in producing machines, computer applications in real-task designing and diploma theses, participation in scientific work conducted by the university and enterprises. Students have all the necessary facilities for studying technology and up-to-date economical courses. Graduates in this specialization work as designers, technologists and mechanical engineers at departments and mechanical shops. In small companies they can fulfil all kinds of work ranging from designing an item to its manufacture and sales. We believe that engineers have a responsibility to improve human welfare, which we demonstrate through our research activities in biomedical engineering, emissions reduction technology, greenhouse gas mitigation, nanotechnology, and interfacial phenomenon. Mechanical Engineers study: Statics: how are forces transmitted to and throughout a structure? Dynamics: what are the velocities, accelerations and resulting forces for a system in motion? Kinematics: how does a mechanism behave as it moves through its range of motion? Strength of Materials: is the component strong enough to support the s? Is it stiff enough? Materials Science: which material has the optimum properties? Thermodynamics: how does energy get converted to useful power? What are the losses? Fluid Mechanics: What is the pressure drop due to the fluid flow? What are the aerodynamic drag forces? Heat Transfer: how do you calculate heat tansfer rates from temperature data? How do you predict the temperature distributions? Manufacturing: What manufacturing processes do you select? Machine Design: How do you synthesize all of the above? Electrical Circuits: how do you integrate electronic controls into your design? Laboratory Method measurement s: how do you make and interpret both thermal and mechanical measurements? Vibrations: how do you predict and control vibrations? Engineering Economics: how do you estimate manufacturing costs?
Vocabulary: mechanical engineering – машиностроение maintenance – техническое обслуживание и (текущий) ремонт profound – абсолютный, полный, совершенный sequence – последовательность; следование appliance – аппарат, прибор, приспособление, устройство efficient – эффективный, действенный; действительный sophisticated – сложный, замысловатый; усовершенствованный to fulfil – выполнять; делать, осуществлять, завершать, заканчивать item – продукт; изделие, отдельная операция (в перечне технологических операций) mitigation – ослабление; смягчение; подавление interfacial – velocity – скорость, быстродействие acceleration – ускорение; разгон, разбег load – загрузка, нагрузка, усилие range – диапазон, интервал, пределы, зона, область stiff – жесткий, плотный, сложный, сильный, интенсивный pressure – давление drop – падение, снижение, понижение, спад drag – сопротивление distribution – распределение, размещение, распространение to interpret – интерпретировать, транслировать, объяснять measurement – измерение to estimate – считать, полагать, оценивать, давать оценку, расценивать UNIT 2 TEXT 2. WHAT IS A MECHANICAL ENGINEER?
Mechanical engineering plays a dominant role in enhancing safety, economic vitality, enjoyment and overall quality of life throughout the world. Mechanical engineers are concerned wiht the principles of force, energy and motion. The men and women who work as mechanical engineers are professionals with expert knowledge of the design and manufacture of mechanical systems and thermal devices and processes. Some examples of products and processes developed by mechanical engineers include engines and control systems for automobiles and aircraft, electric power generation plants, lifesaving medical devices and consumer products ranging from air conditioners to personal computers and athletic equipment. They also design the machines that mass-produce these products. Virtually every aspect of life is touched by mechanical engineering. If something moves or uses energy, a mechanical engineer was probably involved in its design or production. An Evolving Profession The explosive development and expansion in computer technology has literally cnanged the face of mechanical engineering. The drawing board has given way to computer-aided-designed (CAD), and sophisticated computational software tools have enabled mechanical engineers to develop efficient solutions to complex technical problems. For example, the emerging high-tech field of nanofechnology is attracting mechanical engineers to design ultra-miniature machines and tiny implantable medical devices that navigate the human body searching for disease and damaged tissue. Also, the growing concern for the planet and the quality of life for future generations have spurred continuing efforts by mechanical engineers to design resource-efficient and recyclable products and develop equipment and processes to clean-up existing environmental problems ana prevent their reoccurrence. These technologies and a host of others will have an impact on lives in the 21st century, and their development ana refinement require the skills, intuition and creative ability of mechanical engineers. At the same time, mechanical engineers are expected to understand and convey the real-world consequences of technology development alternatives to decision-makers and the public.
Vocabulary: enhancing – усиливать; увеличивать; повышать vitality – жизнеспособность consumer – потребитель sophisticated – сложный, замысловатый; усовершенствованный tissue – ткань spur – зуб(ец), острый выступ, выступ, шип, наконечник recyclable – reoccurrence – host – совокупность convey – доставлять, препровождать UNIT 3 Exercise 1 Exercise 2 Find in the text English equivalents to the following Russian words, word combinations and terms: Nouns: исключение, образование, правило, причина, сырье. Verbs: означать, рассматривать (считать), узнать, преобразовывать, соединять, разделить, производить. Adjectives: отдельный, искусственный, существенный, морской. Adverbs and prepositions: внутри, некоторым образом, просто, непосредственно, конечно, мало (несколько), вместе, слишком много. Word combinations: нельзя не удивиться, можно сказать, в настоящее время.
Exercise 3 Exercise 4 Exercise 5 UNIT 4 TEXT 4. DESIGN ENGINEER A Design Engineeris an engineer whose job is to produce a detailed design from a conceptual design, thereby bringing the real from the abstract on a day-to-day basis. The output of a design engineer is usually a set of drawings and specifications that should produce a working product with very little final adjustment needed. If significant rework is required in the construction, startup, or manufacturing phase, the design engineer did not do an acceptable job. This ability to foresee potential problems is a key skill for a design engineer. Flaws in the conceptual design that go uncaught by the design engineer or others will not surface until production or construction, so there is a potential for a design engineer to become a scapegoat for those problems. A design engineer would usually work on a newer and less proven design than a designer, since once the engineering principles are proven to be correct in a similar design, further engineering knowledge and skill is not generally needed to produce similar designs. Combining design and engineering into a single discipline, though arguably rare, is perhaps a lost praxis due to increasing division of work and specialization that is arguably necessary due to the increased complexity of technology in the present-day Military-industrial complex model. However, current (1990s and on) trends in the engineering of complex systems are largely towards re-integration of work processes. For example, the notions of Integrated Product Teams and Concurrent Engineering place Design firmly within the scope of a wider engineering activity. Prototyping and modeling are major functions in the design process. They are used in combination with testing, including usability testing, in an iterative development of a design.
Vocabulary: detailed – подробный, детальный, доскональный, обстоятельный thereby – таким образом, в связи с этим output – производительность, выработка, производимая мощность; выходная мощность adjustment – регулировка, регулирование, настройка, установка startup – (за)пуск; ввод в действие acceptable – приемлемый; допустимый to foresee – предвидеть flaw – рещина, дефект, изъян uncaught – scapegoat – arguably – спорно praxis – i notion – понятие; представление scope – диапазон; размах; охват; область (действия) iterative – многократный usability – удобство в использовании, практичность
UNIT 5 UNIT 6 UNIT 7 TEXT 7. METALS Metals are materials most widely used in industry because of their properties. The study of the production and properties of metals is known as metallurgy. The separation between the atoms in metals is small, so most metals are dense. The atoms are arranged regularly and can slide over each other. That is why metals are malleable (can be deformed and bent without fracture) and ductile (can be drawn into wire). Metals vary greatly in their properties. For example, lead is soft and can be bent by hand, while iron can only be worked by hammering at red heat. The regular arrangement of atoms in metals gives them a crystalline structure. Irregular crystals are called grains. The properties of the metals depend on the size, shape, orientation, and composition of these grains. In general, a metal with small grains will be harder and stronger than one with coarse grains. Heat treatment such as quenching, tempering, or annealing controls the nature of the grains and their size in the metal. Small amounts of other metals (less than 1 per cent) are often added to a pure metal. This is called alloying (легирование) and it changes the grain structure and properties of metals. All metals can be formed by drawing, rolling, hammering and extrusion, but some require hot-working. Metals are subject to metal fatigue and to creep (the slow increase in length under stress) causing deformation and failure. Both effects are taken into account by engineers when designing, for example, airplanes, gas-turbines, and pressure vessels for high-temperature chemical processes. Metals can be worked using machine-tools such as lathe, milling machine, shaper and grinder. The ways of working a metal depend on its properties. Many metals can be melted and cast in moulds, but special conditions are required for metals that react with air. Vocabulary: property – свойство separation [sepa'reiʃ sn] – разделение, отстояние dense [dens] – плотный arrangement – расположение regularly ['regjulali] – регулярно, правильно to slide [slaid] – скользить malleable – ковкий, податливый, способный деформироваться bent [bent] pp of bend – гнуть to fracture – ломать ductile [dak'tail] – эластичный, ковкий to draw [dro: ] – волочить, тянуть wire ['waia] – проволока lead [led] – свинец iron ['aian] – железо, чугун grain [grein] – зерно to depend [di'pend] – зависеть size [saiz] – размер, величина shape – форма, формировать composition – состав coarse [ko: s] – грубый, крупный treatment ['tri: tmә nt] – обработка quenching – закалка tempering – отпуск после закалки, нормализация annealing – отжиг, отпуск rolling – прокатка to hammer – ковать (напр. молотом) extrusion – экструзия metal fatigue [fa'ti: g] – уталость металла creep [kri: p] – ползучесть stress [stres] – напряжение, давление failure – повреждение, разрушение vessel ['vesl] – сосуд, котел, судно lathe – токарный станок milling machine – фрезерный станок shaper– строгальный станок grinder ['grainә ] – шлифовальный станок to melt [melt] – плавить, расплавлять to cast [ka: st] – отливать mould [mauld] – форма (для отливки)
Exercise 1 Answer the questions for general understanding:
1. What are metals and what do we call metallurgy? 2. Why are most metals dense? 3. Why are metals malleable? 4. What is malleability? 5 What are grains? 6. What is alloying? 7 What is crystalline structure? 8. What do the properties of metals depend on? 9. What changes the size of grains in metals? 10. What are the main processes of metal forming? 11. How are metals worked? 12. What is creeping?
Exercise 2 Find the following words and word combinations in the text: 1. Свойства металлов 2. Расстояние между атомами 3. Правильное расположение 4. Сильно отличаются по своим свойствам 5. Кристаллическая структура 6. Размер зерен 7. Форма зерен 8. Закалка 9. Отжиг 10. волочение 11. прокатка 12. ковка 13. структура и свойства зерна 14. горячая обработка 15. усталость металла 16. ползучесть металла 17. плавка и отливка в формы 18. способы обработки металлов.
Exercise 3 Complete the following sentences: 1.Metals are... 2. Metallurgy is... 3. Most metals are... 4. The regular arrangement of atoms in metals... 5. Irregular crystals... 6. The properties of the metals depend... 7 Metals with small grains will be... 8....controls the nature of the grains in the metal. 9. Alloying is... 10. All metals can be formed by... 11. Creep is... 12. Metals can be worked using...
Exercise 4. Explain in English the meaning of the following words: 1. malleability 2. crystalline structure 3. grains 4. heat treatment 5. alloying 6. creep
Exercise 5 Translate into English: 1. Металлы – плотные материалы потому, что между атомами в металлах малое расстояние 2. Металлы имеют кристаллическую структуру из-за правильного расположения атомов. 3. Чем меньше зерна, тем тверже металл. 4. Закалка и отжиг изменяют форму и размер зерен в металлах. 5. Легирование изменяет структуру зерен и свойства металлов. 6. Металл деформируется и разрушается из-за усталости и ползучести.
UNIT 8 TEXT 8. STEEL The most important metal in industry is iron and its alloy – steel. Steel is an alloy of iron and carbon. It is strong and stiff, but corrodes easily through rusting, although stainless and other special steels resist corrosion. The amount of carbon in steel influences its properties considerably. Steels of low carbon content (mild steels) are quite ductile and are used in the manufacture of sheet iron, wire, and pipes. Medium-carbon steels containing from 0.2 to 0.4 per cent carbon are tougher and stronger and are used as structural steels. Both mild and medium-carbon steels are suitable for forging and welding. High-carbon steels contain from 0.4 to 1.5 per cent carbon, are hard and brittle and are used in cutting tools, surgical instruments, razor blades and springs. Tool steel, also called silver steel, contains about 1 per cent carbon and is strengthened and toughened by quenching and tempering. The inclusion of other elements affects the properties of the steel. Manganese gives extra strength and toughness. Steel containing 4 per cent silicon is used for transformer cores or electromagnets because it has large grains acting like small magnets. The addition of chromium gives extra strength and corrosion resistance, so we can get rust-proof steels. Heating in the presence of carbon or nitrogen-rich materials is used to form a hard surface on steel (case-hardening). High-speed steels, which are extremely important in machine-tools, contain chromium and tungsten plus smaller amounts of vanadium, molybdenum and other metals. Vocabulary: alloy ['ӕ loi] – сплав carbon – углерод stiff – жесткий to corrode [kә 'raud] – разъедать, ржаветь rusty – ржавый stainless – нержавеющий to resist [ri'zist] – сопротивляться tough [tAf] – крепкий, жесткий, прочный, выносливый forging – ковка welding ['weldiŋ ] – сварка brittle ['britl] – хрупкий, ломкий cutting tools – режущие инструменты surgical instruments – хирургические инструменты blade [bleid] – лезвие spring [spriŋ ] – пружина inclusion [in'kluʒ n] – включение to affect [ә fekt] – влиять manganese – марганец silicon ['silikә n] – кремний rust-proof – нержавеющий nitrogen – азот tungsten – вольфрам
Exercise 1 Answer the questions for general understanding: 1. What is steel? 2. What are the main properties of steel? 3. What are the drawbacks of steel? 4. What kinds of steel do you know? Where are they used? 5. What gives the addition of manganese, silicon and chromium to steel? 6. What can be made of mild steels (medium-carbon steels, high-carbon steels)? 7. What kind of steels can be forged and welded? 8. How can we get rust-proof (stainless) steel? 9. What is used to form a hard surface on steel? 10. What are high-speed steels alloyed with?
Exercise 2 Find the following words and word combinations in the text: 1. сплав железа и углерода 2. прочный и жесткий 3. легко коррозирует 4. нержавеющая сталь 5. низкое содержание углерода 6. ковкость 7. листовое железо, проволока, трубы 8. конструкционные стали 9. пригодны для ковки и сварки 10. твердый и хрупкий 11. режущие инструменты 12. инструментальная сталь
UNIT 9 Exercise 1 Answer the questions for general understanding: 1. What can be done to obtain harder steel? 2. What makes steel more soft and tough? 3. What makes steel more malleable and ductile? 4. What can serve as the indicator of metal temperature while heating it? 5. What temperature range is used for tempering? 6. What are the methods of steel heat treatment used for?
Exercise 2 Translate into English the following words and word combinations: 1. температура нормализации 2. мелкозернистая структура 3. быстрое охлаждение 4. закаленная сталь 5. состав стали 6. окисная пленка 7. индикатор температуры 8. медленное охлаждение UNIT 10 Rolling Rolling is the most common metalworking process. More than 90 percent of the aluminum, steel and copper produced is rolled at least once in the course of production. The most common rolled product is sheet. Rolling can be done either hot or cold. If the rolling is finished cold, the surface will be smoother and the product stronger. Extrusion Extrusion is pushing the billet to flow through the orifice of a die. Products may have either a simple or a complex cross section. Aluminium window frames are the examples of complex extrusions. Tubes or other hollow parts can also be extruded. The initial piece is a thick-walled tube, and the extruded part is shaped between a die on the outside of the tube and a mandrel held on the inside. In impact extrusion (also called back-extrusion) (штамповка выдавливанием), the workpiece is placed in the bottom of a hole and a loosely fitting ram is pushed against it. The ram forces the metal to flow back around it, with the gap between the ram and the die determining the wall thickness. The example of this process is the manufacturing of aluminium beer cans.
Vocabulary: shape [ʃ eip] – форма, формировать rolling – прокатка extrusion [iks'truʒ n] – экструзия, выдавливание drawing – волочение forging – ковка sheet– лист to subject – подвергать amount [a'maunt] – количество condition – cсостояние, условие perform – выполнять, проводить to harden – делаться твердым, упрочняться at least – по крайней мере common – общий, распространенный billet ['bilit] – заготовка болванка orifice ['orifis] – отверстие die [dai] – штамп, пуансон, матрица, фильера, волочильная доска cross section – поперечное сечение tubе [tjub] – труба hollow – полый initial – первоначальный, начальный thick-walled – толстостенный mandrel ['mandril] – оправка, сердечник impact – удар loosely – свободно, с зазором fitting – зд. посадка force [fo: s] – сила gap [gӕ p] – промежуток, зазор to determine – устанавливать, определять
Exercise 1 Answer the questions for general understanding: 1. Why are metals so important in industry? 2. What are the main metalworking processes? 3. Why are metals worked mostly hot? 4. What properties does cold working give to metals? 5. What is rolling? Where is it used? 6. What is extrusion? What shapes can be obtained after extrusion? 7. What are the types of extrusion? Exercise 2 Find the following in the text: 1. могут легко деформироваться 2. нужные формы 3. подвергать большим деформациям 4. зерна, свободные от деформации 5. температура перекристаллизации 6. пластическая деформация сжатия 7. самый обычный процесс обработки металла 8. самое обычное изделие проката 9. отверстие фильеры 10. первоначальный 11. сложное сечение 12. пустотелые детали 13. свободно входящий плунжер 14. зазор между плунжером и штампом 15. толщина стенки
Exercise 3 Translate into English: 1. Способность металла перекристаллизоваться при высокой температуре используется при горячей обработке. 2. Перекристаллизация – это рост новых, свободных от деформации зерен. 3. Во время горячей обработки металл может подвергаться очень большой пластической деформации сжатия. 4. Холодная обработка делает металл тверже и прочнее, но некоторые металлы имеют предел деформации. 5. Листовой прокат может производиться горячим или холодным способом. 6. Поверхность холоднокатного листа более гладкая и он прочнее. 7. Поперечное сечение фильеры для экструзии может быть простым или сложным. 8. Алюминиевые и медные сплавы являются наилучшими для экструзии из-за их пластичности при деформации. 9. Алюминиевые банки, тюбики для зубной пасты являются примерами использования штамповки выдавливанием. 10. Толщина стенки алюминиевой банки определяется зазором между пунсуном и штампом.
UNIT 11 Exercise 1 Answer the questions for general understanding: 1. What process improves the mechanical properties of metals? 2. What new properties have hot-worked products? 3. How does the forging of a bar affect the grains of the metal? What is the result of this? 4. How are the flow lines in the forged metal oriented and how does it affect the strength of the forged part? 5. What are the best strain-hardening alloys? Where can we use them? 6. What are the inner flaws in the metal? 7. Can a metal fracture because of the inner flaw? 8. What limits the change of the shape during forming operations? Exercise 2 Find the following word combinations in the text: 1. важная особенность горячей обработки 2. улучшение механическихсвойств металла 3. необработанная отливка 4. направление максимального напряжения 5. способность сопротивляться утончению и разрушению 6. проявлять большее деформационное упрочнение 7. разрушение детали при штамповке 8. внутренние дефекты в металле 9. неметаллические включения 10. способность металлов подвергаться деформации 11. ограничиваться пластичностью металла при растяжении
Exercise 3 Translate into English: 1. Горячая обработка металла улучшает его механические свойства и устраняет пористость и внутренние дефекты. 2. Удлинение зерен в направлении текучести при ковке значительно улучшает прочность металла в этом направлении и уменьшает его прочность в поперечном. 3. Хорошая проковка ориентирует линии текучести в направлении максимального напряжения. 4. Деформационное упрочнение металла при холодной обработке очень важно для получения металлов с улучшенными свойствами. 5. Внутренние дефекты металла – это неметаллические включения типа окислов или сульфидов. 6. Изменение формы при штамповании металлических деталей ограничивается пластичностью металла при растяжении.
UNIT 12 Exercise 1 Answer the questions for general understanding: 1. What are the external forces causing the elastic deformation of materials? Describe those forces that change the form and size of materials. 2. What are the results of external forces? 3. What kinds of deformation are the combinations of tension and compression? 4. What is the result of tension? What happens if the elastic limit of material is exceeded under tension? 5. What do we call fatigue? When does it occur? What are the results of fatigue? 6. What do we call creep? When does this type of permanent deformation take place? What are the results of creep?
Exercise 2 Find the following word combinations in the text: 1. отвечать требованиям современной технологии 2. используя лабороторные методы 3. новые способы использования металлов 4. сжатие, растяжение, изгиб, кручение, срез 5. возвращать первоначальный размер и форму 6. внешняя сила 7. постоянная деформация 8. уменьшение объема 9. растягивающие и сжимающие силы 10. превышать предел упругости материала 11. разрушение материала 12. сопротивление материалов ползучести и усталости Exercise 3 Translate into English: 1. Упругая деформация – это реакция всех материалов на внешние силы, такие как растяжение, сжатие, скручивание, изгиб и срез. 2. Усталость и ползучесть материалов являются результатом внешних сил. 3. Растягивающие и сжимающие силы работают одновременно, когда мы изгибаем или скручиваем материал.. 4. Растяжение материала выше предела его упругости дает постоянную деформацию или разрушение. 5. Ползучесть – это медленное изменение размера детали под напряжением.
UNIT 13 Exercise 1 Answer the questions for general understanding: 1. What is the density of a material? 2. What are the units of density? Where low density is needed? 3. What are the densities of water, aluminium and steel? 4. A measure of what properties is stiffness? When stiffness is important? 5. What is Young modulus? 6. What is strength? 7. What is yield strength? Why fracture strength is always greater than yield strength? 8. What is ductility? Give the examples of ductile materials. Give the examples of brittle materials. 9. What is toughness? 10. What properties of steel are necessary for the manufacturing of: a) springs, b) car body parts, c) bolts and nuts, d) cutting tools? 11. Where is aluminium mostly used because of its light weight?
Exercise 2 Find the following word combinations in the text: 1. количество массы в единице объема 2. килограмм на кубический метр 3. мера сопротивления деформации 4. жесткая конструкция 5. прочность на сжатие 6. способность материала деформироваться не разрушаясь 7. поглощать энергию путем деформации 8. постепенное изменение формы 9. повышенные температуры
Exercise 3 Translate into English: 1. Плотность измеряется в килограммах на кубический метр. 2. Большинство материалов имеют болеевысокую плотность, чем вода и тонут в воде. 3. Плотность материала очень важна, особенно в авиации. 4. Модуль Юнга – отношение приложенной силы к упругой деформации данного материала. 5. Чем более металл жесткий, тем менее он деформирунтся под нагрузкой. 6. Когда металл растягивается, он сначала течет, то есть пластически деформируется. 7. Свинец, медь, алюминий и золото – самые ковкие материалы. 8. Сопротивление ползучести является очень важным свойством материалов, которые используются в авиационных моторах.
UNIT 14 TEXT 14. MACHINE-TOOLS Exercise 1 Exercise 2 Exercise 3 Exercise 4 LATHE Lathe is still the most important machine-tool. It produces parts of circular cross-section by turning the workpiece on its axis and cutting its surface with a sharp stationary tool. The tool may be moved sideways to produce a cylindrical part and moved towards the workpiece to control the depth of cut. Nowadays all lathes are power-driven by electric motors. That allows continuous rotation of the workpiece at a variety of speeds. The modern lathe is driven by means of a headstock supporting a hollow spindle on accurate bearings and carrying either a chuck or a faceplate, to which the workpiece is clamped. The movement of the tool, both along the lathe bed and at right angle to it, can be accurately controlled, so enabling a part to be machined to close tolerances. Modern lathes are often under numerical control. Vocabulary: lathe [leiƟ ] – токарный станок circular cross-section ['sә: kjulә ] – круглое поперечное сечение surface ['sә: fis] – поверхность stationary ['steiʃ nә ri] – неподвижный, стационарный sideways ['saidweiz] – в сторону variety [vә 'raiә ti] – разнообразие, разновидность depth [depƟ ] – глубина headstock ['hedstok] – передняя бабка spindle [spindl] – шпиндель chuck – зажим, патрон faceplate – планшайба lathe bed – станина станка to enable [i'neibl] – давать возможность tolerance – допуск
Exercise 1 Answer the questions for general understanding: 1. What are machine-tools used for? 2. How are most machine-tools driven nowadays? 3. What facilities have all machine-tools? 4. How are the cutting tool and the workpiece cooled during machining? 5. What other machining methods have been developed lately? 6. What systems are used now for the manufacture of a range of products without the use of manual labour? 7. What parts can be made with lathes? 8. How can the cutting tool be moved on a lathe? 9. How is the workpiece clamped in a lathe? 10. Can we change the speeds of workpiece rotation in a lathe? 11. What is numerical control of machine tools used for?
Exercise 2 Find the following word combinations in the text: 1. обрабатываемый материал 2. электропривод 3. более точный 4. отдельные детали 5. процесс массового производства 6. приспособления для держания резца и детали 7. операции по механической обработке детали 8. высоковольтный разряд 9. сверление ультразвуком 10. резание с помощью лазерного луча 11. гибкие производственные системы 12. детали круглого сечения 13. поворачивать деталь вокруг ее оси 14. двигать в сторону, двигать по направлению к детали 15. глубина резания 16. непрерывное вращение детали 17. движение резца вдоль станины
Exercise 3 Translate into English: 1. Токарный станок позволяет производитьт детали круглого сечения. 2. Деталь зажимается в патроне или на на планшайбе токарного станка. 3. Резец может двигаться как вдоль станины, так и под прямым углом к ней. 4. Современные токарные станки часто имеют цифровое управление. MILLING MACHINE In a milling machine the cutter is a circular device with a series of cutting edges on its circumference. The workpiece is held on a table that controls the feed against the cutter. The table has three possible movements: longitudinal, horizontal, and vertical; in some cases it can also rotate. Milling machines are the most versatile of all machine tools. Flat or contoured surfaces may be machined with excellent finish and accuracy. Angles, slots, gear teeth and cuts can be made by using various shapes of cutters. Sliapers and Planers The shaper (поперечно-строгальный станок) is used mainly to produce different flat surfaces. The tool slides against the stationary workpiece and cuts on one stroke, returns to its starting position, and then cuts on the next stroke after a slight lateral displacement. In general, the shaper can make any surface having straight-line elements. It uses only one cutting-tool and is relatively slow, because the return stroke is idle. That is why the shaper is seldom found on a mass production line. It is, however, valuable for tool production and for workshops where flexibility is important and relative slowness is unimportant. The planer (продольно-строгальный станок) is the largest of the reciprocating machine tools. It differs from the shaper, which moves a tool past a fixed workpiece because the planer moves the workpiece to expose a new section to the tool. Like the shaper, the planer is intended to produce vertical, horizontal, or diagonal cuts. It is also possible to mount several tools at one time in any or all tool holders of a planer to execute multiple simultaneous cuts. Grinders Grinders (шлифовальные станки) remove metal by a rotating abrasive wheel. The wheel is composed of many small grains of abrasive, bonded together, with each grain acting as a miniature cutting tool. The process gives very smooth and accurate finishes. Only a small amount of material is removed at each pass of the wheel, so grinding machines require fine wheel regulation. The pressure of the wheel against the workpiece is usually very light, so that grinding can be carried out on fragile materials that cannot be machined by other conventional devices.
Vocabulary: milling machine – фрезерный станок series – серия, ряд cutting edge – режущий край, острие circumference [sә 'kAmfә rә ns] – окружность to feed [fi: d] – подавать longitudinal – продольный horizontal [hori'zontl] – горизонтальный vertical – вертикальный versatile ['vә: sә tail] – универсальный flat [flӕ t] – плоский contoured – контурный angle ['ӕ ngl] – угол slot [slot] – прорезь, паз gear teeth [gia'] – зубцы шестерни drill [dril] – дрель, сверло, сверлить hole [houl] – отверстие to enlarge – увеличивать thread [Ɵ red] – резьба portable ['po: tә bl] – портативный unit ['ju: nit] – единица, узел previously ['pri: viә sli] – ранее to slide [slaid] – скользить stroke [strouk] – ход lateral – боковой displacement [dis'pleismә nt] – смещение straight [streit] – прямой idle ['aidl] – на холостом ходу workshop – цех, мастерская to mount [maunt] – крепить holder – держатель to execute ['eksikjut] – выполнять simultaneous – одновременный multiple ['mAltipl] – многочисленный grinder ['graindә '] – шлифовальный станок wheel [wi: l] – круг, колесо bonded – скрепленный to remove [n'mu: v] – удалять pass [pa: s] – проход fine [fain] – точный conventional [kә n'venʃ nl] – обычный device [di'vais] – устройства, прибор fragile – хрупкий
Exercise 1 Answer the questions for general understanding: 1. What is the shape of a cutter in a milling machine? 2. What moves in a milling machine, a table or a cutter? 3. What possible movements has the table of a milling machine? 4. What kind of surfaces and shapes may be machined by a milling machine? 5. What can we use a drilling machine for? 6. What kinds of drilling machines exist? 7. What is rotated while boring, a cutter or a work-piece? 8. Describe the work of a shaper (planer). 9. What must be done to execute multiple simultaneous cuts on a planer? 10. What is the working tool in a grinder? 11. Can we obtain a very smooth surface after grinding and why? 12. Can we grind fragile materials and why?
Exercise 2 Translate into English: 1. Токарный станок все еще остается самым важным станком. 2. Все современные токарные станки оборудованы электроприводом. 3. Движение инструмента контролируется с высокой точностью. 4. Электропривод позволяет обрабатывать заготовку на различных скоростях. DIES Dies are tools used for the shaping solid materials, especially those employed in the pressworking of cold metals. In presswork, dies are used in pairs. The smaller die, or punch, fits inside the larger die, called the matrix or, simply, the die. The metal to be formed, usually a sheet, is placed over the matrix on the press. The punch is mounted on the press and moves down by hydraulic or mechanical force. A number of different forms of dies are employed for different operations. The simplest are piercing dies (пробивной штамп), used for punching holes. Bending and folding dies are designed to make single or compound bends. A combination die is designed to perform more than one of the above operations in one stroke of thepress. A progressive die permits successive forming operations with the same die. In coining, metal is forced to flow into two matching dies, each of which bears a engraved design. Wiredrawing Dies In the manufacture of wire, a drawplate (волочильная доска) is usually employed. This tool is a metal plate containing a number of holes, successively less in diameter and known as wire dies. A piece of metal is pulled through the largest die to make a coarse wire. This wire is then drawn through the smaller hole, and then the next, until the wire is reduced to the desired measurement. Wiredrawing dies are made from extremely hard materials, such as tungsten carbide or diamonds. Thread Cutting Dies For cutting threads on bolts or on the outside of pipes, a thread-cutting die (резьбонарезная плашка) is used. It is usually made of hardened steel in the form of a round plate with a hole in the centre. The hole has a thread. To cut an outside thread, the die is lubricated with oil and simply screwed onto an unthreaded bolt or piece of pipe, the same way a nut is screwed onto a bolt. The corresponding tool for cutting an inside thread, such as that inside a nut, is called a tap (метчик).
Vocabulary: chip – стружка sharp [ʃ a: p] – острый friction ['frikʃ n] – трение content ['kontent] – содержание range [reindʒ ] – диапазон inexpensive [inik'spensiv] – недорогой to permit [pә: 'mit] – позволять, разрешать common ['komә n] – обычный tungsten ['tAŋ stn] – вольфрам ingredient [in'gri: diә nt] – ингридиент diamond ['daimә nd] – алмаз tips – наконечники ceramic [si'rӕ mik] – керамический truing ['truiŋ ] – правка, наводка, заточка die [dai] – матрица, штамп matrix – матрица to employ [im'ploi] – применять to pierce ['piә s] – протыкать, прокалывать to punch – пpотыкать, прокалывать matching – сочетающийся, парный coarse [ko: s] – грубый wire ['wajә ] – проволока to draw [dro: ] – тащить, волочить thread [Ɵ red] – резьба hardened – закаленный to lubricate ['lu: brikeit] – смазывать to screw [skru: ] – привинчивать nut [nAt] – гайка outside [aut'said] – наружный, внешний inside [in'said] – внутри, внутренний
Exercise 1 Find English equivalents in the text: 1. удалять металлическую стружку 2. острый режущий край 3. содержание углерода 4. режущая способность 5. сталь для скоростного резания 6. правка шлифовальных кругов 7. гидравлическое или механическое давление 8. различные формы штампов
Exercise 2 Translate the following sentences into Russian: 1. Все резцы и фрезы должны иметь острую режущую кромку. 2. Во время резания режущий инструмент и деталь имеют высокую температуру и должны охлаждаться. 3. Углеродистые стали часто используются для изготовления резцов, потому что они недорогие. 4. Быстрорежущие стали содержат вольфрам, хром и ванадий. 5. Алмазы используются для резания абразивных материалов и чистовой обработки поверхности твердых материалов. 6. Для различных операций используют различные штампы. 7. Волочильные доски для проволоки делаются из очень твердых материалов. 8. Резьбонарезные млашки и метчики используются для нарезки резьбы снаружи и внутри.
UNIT 15 TEXT 15. AUTOMATION Automation is the system of manufacture performing certain tasks, previously done by people, by machines only. The sequences of operations are controlled automatically. The most familiar example of a highly automated system is an assembly plant for automobiles or other complex products. The term automation is also used to describe nonma-nufaeturing systems in which automatic devices can operate independently of human control. Such devices as automatic pilots, automatic telephone equipment and automated control systems are used to perform various operations much faster and better than could be done by peoole. Automated manufacturing had several steps in its development. Mechanization was the first step necessary in the development of automation. The simplification of work made it possible to design and build machines that resembled the motions of the worker. These specialized machines were motorized and they had better production efficiency. Industrial robots, originally designed only to perform hi triple tasks in environments dangerous to human workers, are now widely used to transfer, manipulate, and position both light and heavy workpieces performing all the functions of a transfer machine. In the 1920s the automobile industry for the first time used an integrated system of production. This method of production was adopted by most car manufacturers and became known as Detroit automation. The feedback principle is used in all automatic-control mechanisms when machines have ability to correct themselves. The feedback principle has been used for centuries. An outstanding early example is the flyball governor, invented in 1788 by James Watt to control the speed of the steam engine. The common household thermostat is another example of a feedback device. Using feedback devices, machines can start, stop, speed up, slow down, count, inspect, test, compare, and measure. These operations are commonly applied to a wide variety of production operations. Computers have greatly facilitated the use of feedback in manufacturing processes. Computers gave rise to the development of numerically controlled machines. The motions of these machines are controlled by punched paper or magnetic tapes. In numerically controlled machining centres machine tools can perform several different machining operations. More recently, the introduction of microprocessors and computers have made possible the development of computer-aided design and computer-aided manufacture (CAD and CAM) technologies. When using these systems a designer draws a part and indicates its dimensions with the help of a mouse, light pen, or other input device. After the drawing has been completed the computer automatically gives the instructions that direct a machining centre to machine the part. Another development using automation is the flexible manufacturing systems (FMS). A computer in FMS can be used to monitor and control the operation of the whole factory. |
Последнее изменение этой страницы: 2017-05-05; Просмотров: 96; Нарушение авторского права страницы