![]() |
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Определение положения центра тяжести плоской фигуры
По центрам тяжести ее частей. Способ отрицательных площадей
Пусть требуется определить положение центра тяжести некоторой плоской фигуры, состоящей из трех частей, положение центров тяжести которых известно (рис. 1.106). Положим, что площади частей фигуры соответственно равны
Рис. 1.106 Рис. 107
Этот способ удобно применять и при определении положения центра тяжести плоской фигуры (рис. 1.107), из которой вырезана некоторая часть. Зная площадь
Этот способ определения центра тяжести плоской фигуры, из которой вырезана некоторая часть, называется способом отрицательных площадей. 10.7. Примеры определения центра тяжести твердого тела Задача 1.17. Найти положение центра тяжести однородной пластинки, изображенной на рис. 1.108, если известны размеры: АВ=20 см; BD=24 см; ED=10 см; AN=2 см; NL=18 см; LK=20 см; FK=8 см. Решение. Для нахождения центра тяжести площади пластинки разбиваем ее на три прямоугольника и отмечаем центры тяжести каждого из них с1, с2, с3. Все результаты вычисляем и помещаем в таблицу 1.2, пользуясь формулами для определения центра тяжести плоской фигуры.
Рис. 1.108
Каждому прямоугольнику соответствует одна строка таблицы. В эту строку помещаем значения его площади
Таблица 1.2 Расчетные данные
Суммированием определяем площадь и статические моменты всей заданной фигуры. Площадь заданной фигуры F=100 см2. Ее статические моменты:
Координаты центра тяжести пластинки:
По вычисленным координатам строим центр тяжести плаcтинки С.
Задача 1.18. Определить положение центра тяжести С однородного диска радиусом Решение. Решаем задачу по способу отрицательных площадей. Принимаем за ось x ось симметрии рассматриваемой плоской фигуры. Центр тяжести фигуры находится на этой оси, т.е.
Рис. 1.109
Здесь Тогда
Строим центр тяжести
Задача 1.19. Определить положение центра тяжести сечения, составленного из профилей стандартного проекта (рис. 1.110).
Рис. 1.110
Сечение составлено из швеллера № 20 (1), двутавра № 20 (2), равнобокого уголка № 18 (3) и стальной однородной полосы размером 420 ´ 20 (4). При решении подобных задач нужно пользоваться сортаментом прокатной стали: двутавры стальные горячекатаные – ГОСТ 8240-89, уголки стальные горячекатаные равнополочные – ГОСТ 8509-93. Эти таблицы для каждого профиля содержат размеры и площадь, а для уголков и швеллеров, кроме того координаты центров тяжести. Решение. Задачу будем решать, используя метод составных площадей, для чего разобьем сечение на составляющие элементы. На расчетной схеме необходимо показать: - основные размеры составляющих площадей; - центры тяжести составляющих площадей обозначим Для швеллера и уголка положение центров тяжести указано в сортаменте, двутавр является симметричной фигурой, поэтому центр тяжести лежит на пересечении осей симметрии, у однородной пластины центр тяжести находится на пересечении диагоналей; - систему отсчета (рис. 1.111 оси координат изображаются так, чтобы горизонтальная ось совпадала с нижним краем сечения, а вертикальная ось – с правым). Рис. 1.111
При решении задачи будем использовать таблицу 1.3, которая содержит: элементы сечения (графа 1); координаты центров тяжести составляющих площадей (графы 2 и 3); площади сечений (графа 4); статические моменты площади сечения относительно оси y (графа 5) и статические моменты площади сечения относительно оси х (графа 6). Для определения координат центров тяжести каждого элемента сечения необходимо опустить перпендикуляры из точек Швеллер имеет ось симметрии, поэтому в сортаменте указывается одна координата центра тяжести этой фигуры (
Координату
Таблица 1.3 |
Последнее изменение этой страницы: 2019-04-09; Просмотров: 922; Нарушение авторского права страницы