Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Плоскость в пространстве.
Пусть Р – произвольная плоскость в пространстве. Точка М0( x0, y0, z0) Î Р. Вектор = (A,B,C) –ненулевой вектор, перпендикулярный плоскости Р (нормальный вектор плоскости)
Необходимо получить уравнение плоскости. Решение. Для произвольной точки М(х, у, z), принадлежащей плоскости, составим вектор . Т.к. вектор - вектор нормали, то он перпендикулярен плоскости, а, следовательно, перпендикулярен и вектору . Тогда скалярное произведение × = 0 Таким образом, получаем уравнение плоскости (5.1) Уравнение (5.1) называют уравнением плоскости, проходящей через заданную точку. Легко показать, что уравнение (5.1) приводится к виду: Ax + By + Cz + D = 0 – уравнение 1-ой степени относительно переменных координат х, у, z ( D = - Ax0 – By0 – Cz0). Определение. Плоскостью называется поверхность, все точки которой удовлетворяют общему уравнению: Ax + By + Cz + D = 0, (5.2)
где А, В, С – координаты вектора - вектор нормали к плоскости. Рассмотрим особенности расположения плоскости в тех случаях, когда те или иные коэффициенты уравнения (5.2) обращаются в нуль. Частные случаи общего уравнения плоскости:
Уравнение плоскости, проходящей через три точки. Для того, чтобы через три какие- либо точки пространства можно было провести единственную плоскость, необходимо, чтобы эти точки не лежали на одной прямой. Рассмотрим точки М1(x1, y1, z1), M2(x2, y2, z2), M3(x3, y3, z3) в общей декартовой системе координат. Для того, чтобы произвольная точка М(x, y, z) лежала в одной плоскости с точками М1, М2, М3 необходимо, чтобы векторы были компланарны. Уравнение плоскости, проходящей через три точки: (5.3)
|
Последнее изменение этой страницы: 2019-05-08; Просмотров: 193; Нарушение авторского права страницы