![]() |
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Декартовой прямоугольной.
В случае сферической системы координат соотношения имеют вид:
§6. Линейные преобразования. Определение: Будем считать, что в линейном пространстве L задано некоторое линейное преобразование А, если любому элементу Определение: Преобразование А называется линейным, если для любых векторов A( A(a Определение: Линейное преобразование называется тождественным, если оно преобразует элемент линейного пространства сам в себя. Е
Пример. Является ли А линейным преобразованием. А
Запишем преобразование А для какого- либо элемента Проверим, выполняется ли правило операции сложения для этого преобразования А(
Определение: Если в пространстве L имеются векторы линейного преобразования
Определение: Если
Определение: Если в линейном пространстве L есть n линейно независимых векторов и любые n + 1 векторов линейно зависимы, то пространство L называется n-мерным, а совокупность линейно независимых векторов называется базисом линейного пространства L.
Следствие: Любой вектор линейного пространства может быть представлен в виде линейной комбинации векторов базиса.
Пусть в n- мерном линейном пространстве с базисом
A A ………………………………. A Тогда матрица А = Если в пространстве L взять вектор
…………………………….. Эти равенства можно назвать линейным преобразованием в базисе В матричном виде:
Пример. Найти матрицу линейного преобразования, заданного в виде: x¢ = x + y y¢ = y + z z¢ = z + x x¢ = 1×x + 1×y + 0×z y¢ = 0×x + 1×y + 1×z z¢ = 1×x + 0×y + 1×z A =
На практике действия над линейными преобразованиями сводятся к действиям над их матрицами. Определение: Если вектор С = В×А Пример. Задано линейное преобразование А, переводящее вектор С = В×А Т.е.
Примечание: Если ïАï= 0, то преобразование вырожденное, т.е., например, плоскость преобразуется не в целую плоскость, а в прямую.
§7. Собственные значения и собственные векторы линейного преобразования.
Определение: Пусть L – заданное n- мерное линейное пространство. Ненулевой вектор
A
При этом число l называется собственным значением (характеристическим числом) линейного преобразования А, соответствующего вектору
Перенеся правую часть (7.1) в левую и принимая во внимание соотношение
Уравнение (7.2) эквивалентно системе линейных однородных уравнений:
Для существования ненулевого решения системы линейных однородных уравнений (7.3) необходимо и достаточно, чтобы определитель коэффициентов этой системы равнялся нулю, т.е. |A-λE|= Этот определитель является многочленом n-ой степени относительно λ и называется характеристическим многочленом линейного преобразования А, а уравнение (7.4) - характеристическим уравнением матрицы А. Определение: Если линейное преобразование А в некотором базисе
Рассмотрим частный случай. Пусть А – некоторое линейное преобразование плоскости, матрица которого равна
в некотором базисе Если преобразование А имеет собственный вектор с собственным значением l, то А
Т.к. собственный вектор Полученное уравнение является характеристическим уравнением линейного преобразования А.
Таким образом, можно найти собственный вектор
Понятно, что если характеристическое уравнение не имеет действительных корней, то линейное преобразование А не имеет собственных векторов. Следует отметить, что если Действительно,
Т.к. характеристическое уравнение может иметь два различных действительных корня l1 и l2, то в этом случае при подстановке их в систему уравнений получим бесконечное количество решений. (Т.к. уравнения линейно зависимы). Это множество решений определяет две собственные прямые. Если характеристическое уравнение имеет два равных корня l1 = l2 = l, то либо имеется лишь одна собственная прямая, либо, если при подстановке в систему она превращается в систему вида: Пример. Найти характеристические числа и собственные векторы линейного преобразования с матрицей А = Запишем линейное преобразование в виде: Составим характеристическое уравнение: l2 - 8l + 7 = 0; Корни характеристического уравнения: l1 = 7; l2 = 1; Для корня l1 = 7: Из системы получается зависимость: x1 – 2 x2 = 0. Собственные векторы для первого корня характеристического уравнения имеют координаты: ( t; 0,5 t) где t- параметр.
Для корня l2 = 1: Из системы получается зависимость: x1 + x2 = 0. Собственные векторы для второго корня характеристического уравнения имеют координаты: ( t; - t) где t- параметр. Полученные собственные векторы можно записать в виде: Пример. Найти характеристические числа и собственные векторы линейного преобразования с матрицей А =
Запишем линейное преобразование в виде:
Составим характеристическое уравнение: l2 - 4l + 4 = 0; Корни характеристического уравнения: l1 = l2 = 2; Получаем: Из системы получается зависимость: x1 – x2 = 0. Собственные векторы для первого корня характеристического уравнения имеют координаты: ( t; t) где t- параметр. Собственный вектор можно записать:
Рассмотрим другой частный случай. Если
где l - собственное значение (характеристическое число) преобразования А.
Если матрица линейного преобразования А имеет вид:
Характеристическое уравнение: Раскрыв определитель, получим кубическое уравнение относительно l. Любое кубическое уравнение с действительными коэффициентами имеет либо один, либо три действительных корня. Тогда любое линейное преобразование в трехмерном пространстве имеет собственные векторы.
Пример. Найти характеристические числа и собственные векторы линейного преобразования А, матрица линейного преобразования А =
Составим характеристическое уравнение:
(1 - l)((5 - l)(1 - l) - 1) - (1 - l - 3) + 3(1 - 15 + 3l) = 0 (1 - l)(5 - 5l - l + l2 - 1) + 2 + l - 42 + 9l = 0 (1 - l)(4 - 6l + l2) + 10l - 40 = 0 4 - 6l + l2 - 4l + 6l2 - l3 + 10l - 40 = 0 -l3 + 7l2 – 36 = 0 -l3 + 9l2 - 2l2 – 36 = 0 -l2(l + 2) + 9(l2 – 4) = 0 (l + 2)(-l2 + 9l - 18) = 0
Собственные значения: l1 = -2; l2 = 3; l3 = 6;
1) Для l1 = -2:
Если принять х1 = 1, то
Собственные векторы:
2) Для l2 = 3:
Если принять х1 = 1, то
Собственные векторы:
3) Для l3 = 6:
Если принять х1 = 1, то Собственные векторы:
Пример. Найти характеристические числа и собственные векторы линейного преобразования А, матрица линейного преобразования А =
Составим характеристическое уравнение:
-(3 + l)((1 - l)(2 - l) – 2) + 2(4 - 2l - 2) - 4(2 - 1 + l) = 0 -(3 + l)(2 - l - 2l + l2 - 2) + 2(2 - 2l) - 4(1 + l) = 0 -(3 + l)(l2 - 3l) + 4 - 4l - 4 - 4l = 0 -3l2 + 9l - l3 + 3l2 - 8l = 0 -l3 + l = 0 l1 = 0; l2 = 1; l3 = -1;
Для l1 = 0:
Если принять х3 = 1, получаем х1 = 0, х2 = -2 Собственные векторы
Аналогично можно найти
§7. Квадратичные формы. Определение: Однородный многочлен второй степени относительно переменных х1 и х2 Ф(х1, х2) = а11 не содержащий свободного члена и неизвестных в первой степени, называется квадратичной формой переменных х1 и х2.
Определение: Однородный многочлен второй степени относительно переменных х1, х2 и х3
не содержащий свободного члена и неизвестных в первой степени называется квадратичной формой переменных х1, х2 и х3.
Рассмотрим квадратичную форму двух переменных. Квадратичная форма имеет симметрическую матрицу А =
Пусть на плоскости задан ортогональный базис Если задана квадратичная форма Ф(х1, х2) = а11 |
Последнее изменение этой страницы: 2019-05-08; Просмотров: 198; Нарушение авторского права страницы