Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Расстояние от точки до плоскости.
Расстояние от произвольной точки М0(х0, у0, z0) до плоскости Ах+Ву+Сz+D=0 равно: (5.8)
Пример. Найти уравнение плоскости, проходящей через две точки P(2; 0; -1) и Q(1; -1; 3) перпендикулярно плоскости 3х + 2у – z + 5 = 0.
Вектор нормали к плоскости 3х + 2у – z + 5 = 0 параллелен искомой плоскости. Получаем:
Пример. Найти уравнение плоскости, проходящей через точки А(2, -1, 4) и В(3, 2, -1) перпендикулярно плоскости х + у + 2z – 3 = 0.
Искомое уравнение плоскости имеет вид: Ax + By + Cz + D = 0, вектор нормали к этой плоскости (A, B, C). Вектор (1, 3, -5) принадлежит плоскости. Заданная нам плоскость, перпендикулярная искомой имеет вектор нормали (1, 1, 2). Т.к. точки А и В принадлежат обеим плоскостям, а плоскости взаимно перпендикулярны, то Таким образом, вектор нормали (11, -7, -2). Т.к. точка А принадлежит искомой плоскости, то ее координаты должны удовлетворять уравнению этой плоскости, т.е. 11×2 + 7×1 - 2×4 + D = 0; D = -21. Итого, получаем уравнение плоскости: 11x - 7y – 2z – 21 = 0.
Пример. Найти уравнение плоскости, зная, что точка Р(4, -3, 12) – основание перпендикуляра, опущенного из начала координат на эту плоскость.
Находим координаты вектора нормали = (4, -3, 12). Искомое уравнение плоскости имеет вид: 4x – 3y + 12z + D = 0. Для нахождения коэффициента D подставим в уравнение координаты точки Р: 16 + 9 + 144 + D = 0 D = -169 Итого, получаем искомое уравнение: 4x – 3y + 12z – 169 = 0
Пример. Даны координаты вершин пирамиды А1(1; 0; 3), A2(2; -1; 3), A3(2; 1; 1), A4(1; 2; 5).
1) Найти длину ребра А1А2.
2) Найти угол между ребрами А1А2 и А1А4.
3) Найти угол между ребром А1А4 и гранью А1А2А3.
Сначала найдем вектор нормали к грани А1А2А3 как векторное произведение векторов и . = (2-1; 1-0; 1-3) = (1; 1; -2); Найдем угол между вектором нормали и вектором . -4 – 4 = -8. Искомый угол g между вектором и плоскостью будет равен g = 900 - b.
4) Найти площадь грани А1А2А3.
5) Найти объем пирамиды. (ед3). 6) Найти уравнение плоскости А1А2А3.
Воспользуемся формулой уравнения плоскости, проходящей через три точки. 2x + 2y + 2z – 8 = 0 x + y + z – 4 = 0; 5.2. Угол между плоскостями.
j1 j 0
Угол между двумя плоскостями в пространстве j связан с углом между нормалями к этим плоскостям j1 соотношением: j = j1 или j = 1800 - j1, т.е. cosj = ±cosj1. Определим угол j1. Известно, что плоскости могут быть заданы соотношениями: , где (A1, B1, C1), (A2, B2, C2). Угол между векторами нормали найдем из их скалярного произведения: . Таким образом, угол между плоскостями находится по формуле: (5.9)
Выбор знака косинуса зависит от того, какой угол между плоскостями следует найти – острый, или смежный с ним тупой. Условия параллельности и перпендикулярности Плоскостей. На основе полученной выше формулы для нахождения угла между плоскостями можно найти условия параллельности и перпендикулярности плоскостей. Условие перпендикулярности плоскостей: Для того, чтобы плоскости были перпендикулярны необходимо и достаточно, чтобы косинус угла между плоскостями равнялся нулю. Это условие выполняется, если: . (5.10)
Условие параллельности плоскостей: Плоскости параллельны тогда и только тогда, когда их нормальные векторы коллинеарный: ïï . Это условие выполняется, если: (5.11)
|
Последнее изменение этой страницы: 2019-05-08; Просмотров: 194; Нарушение авторского права страницы