Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Приведение квадратичных форм к каноническому виду.



       Рассмотрим некоторое линейное преобразование А с матрицей .

Это симметрическое преобразование можно записать в виде:

y1 = a11x1 + a12x2

y2 = a12x1 + a22x2

где у1 и у2 – координаты вектора  в базисе .

       Очевидно, что квадратичная форма может быть записана в виде

Ф(х1, х2) = х1у1 + х2у2.

 

       Как видно, геометрический смысл числового значения квадратичной формы Ф в точке с координатами х1 и х2 – скалярное произведение .

       Если взять другой ортонормированный базис на плоскости, то в нем квадратичная форма Ф будет выглядеть иначе, хотя ее числовое значение в каждой геометрической точке и не изменится. Если найти такой базис, в котором квадратичная форма не будет содержать координат в первой степени, а только координаты в квадрате, то квадратичную форму можно будет привести к каноническому виду.

       Если в качестве базиса взять совокупность собственных векторов линейного преобразования, то в этом базисе матрица линейного преобразования имеет вид:

.

       При переходе к новому базису от переменных х1 и х2 мы переходим к переменным  и . Тогда:

 

       Тогда .

 

Выражение  называется каноническим видом квадратичной формы. Аналогично можно привести к каноническому виду квадратичную форму с большим числом переменных.

Теория квадратичных форм используется для приведения к каноническому виду уравнений кривых и поверхностей второго порядка.

 

Пример. Привести к каноническому виду квадратичную форму

Ф(х1, х2) = 27 .

 

Коэффициенты: а11 = 27, а12 = 5, а22 = 3.

Составим характеристическое уравнение: ;

(27 - l)(3 - l) – 25 = 0

l2 - 30l + 56 = 0

l1 = 2; l2 = 28;

 

 

 

Пример. Привести к каноническому виду уравнение второго порядка:

17x2 + 12xy + 8y2 – 20 = 0.

 

Коэффициенты а11 = 17, а12 = 6, а22 = 8. А =

Составим характеристическое уравнение:

(17 - l)(8 - l) - 36 = 0

136 - 8l - 17l + l2 – 36 = 0

l2 - 25l + 100 = 0

l1 = 5, l2 = 20.

Итого:  - каноническое уравнение эллипса.

 

Пример. Используя теорию квадратичных форм, привести к каноническому виду уравнение линии второго порядка. Схематично изобразить график.

       Решение: Составим характеристическое уравнение квадратичной формы : при

Решив это уравнение, получим l1 = 2, l2 = 6.

Найдем координаты собственных векторов:

полагая m1 = 1, получим n1 =

полагая m2 = 1, получим n2 =

Собственные векторы:

Находим координаты единичных векторов нового базиса.

Имеем следующее уравнение линии в новой системе координат:

Каноническое уравнение линии в новой системе координат будет иметь вид:

Пример. Используя теорию квадратичных форм, привести к каноническому виду уравнение линии второго порядка. Схематично изобразить график.

       Решение: Составим характеристическое уравнение квадратичной формы : при

Решив это уравнение, получим l1 = 1, l2 = 11.

Найдем координаты собственных векторов:

полагая m1 = 1, получим n1 =

полагая m2 = 1, получим n2 =

Собственные векторы:

Находим координаты единичных векторов нового базиса.

Имеем следующее уравнение линии в новой системе координат:

Каноническое уравнение линии в новой системе координат будет иметь вид:

 

 

       Пример. Используя теорию квадратичных форм, привести к каноническому виду уравнение линии второго порядка. Схематично изобразить график.

4ху + 3у2 + 16 = 0

 

Коэффициенты: a11 = 0; a12 = 2; a22 = 3.

Характеристическое уравнение:

Корни: l1 = -1, l2 = 4.

 

Для l1 = -1                                     Для l2 = 4

                             

 

m1 = 1; n1 = -0,5;                            m2 = 1; n2 = 2;

 

= (1; -0,5)                              = (1; 2)

                                     

                   

Получаем:   -каноническое уравнение гиперболы.

 

                                              


Поделиться:



Последнее изменение этой страницы: 2019-05-08; Просмотров: 201; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.023 с.)
Главная | Случайная страница | Обратная связь