Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Называется проверкой статистических гипотез.
Выдвинутая гипотеза называется нулевой (основной). Ее принято обозначать Н0. По отношению к высказанной (основной) гипотезе всегда можно сформулировать альтернативную ( конкурирующую ), противоречащую ей. Альтернативную (конкурирующую) гипотезу принято обозначать Н1 . Цель статистической проверки гипотез состоит в том, чтобы на основании выборочных данных принять решение о справедливости основной гипотезы Н0 Если выдвигаемая гипотеза сводится к утверждению о том, что значение некоторого неизвестного параметра генеральной совокупности в точности равно заданной величине, то эта гипотеза называется простой, например: «Среднедушевой совокупный доход населения России составляет 650 руб. в месяц»; «Уровень безработицы (доля безработных в численности экономически активного населения) в России равен 9%». В других случаях гипотеза называется сложной . В качестве нулевой гипотезы Н0 принято выдвигать простую гипотезу, так как обычно бывает удобнее проверять более строгое утверждение. По своему содержанию статистические гипотезы можно подразделить на несколько основных типов*: — гипотезы о виде закона распределения исследуемой случайной величины; — гипотезы о числовых значениях параметров исследуемой генеральной совокупности**; — гипотезы об однородности двух или нескольких выборок или некоторых характеристик анализируемых совокупностей; — гипотезы об общем виде модели, описывающей статистическую зависимость между признака- ми; и др. Так как проверка статистических гипотез осуществляется на основании выборочных данных, т. е. ограниченного ряда наблюдений, решения относительно нулевой гипотезы Н0 имеют вероятностный характер. Другими словами, такое решение неизбежно сопровождается некоторой, хотя возможно и очень малой, вероятностью ошибочного заключения как в ту, так и в другую сторону. Так, в какой-то небольшой доле случаев α нулевая гипотеза Н0 может оказаться отвергнутой, в то время как в действительности в генеральной совокупности она является справедливой. Такую ошибку называют ошибкой 1- го рода , а ее вероятность — 1 уровнем значимости и обозначают α. Наоборот, в какой-то небольшой доле случаев β нулевая гипотеза Н0 принимается, в то время как на самом деле в генеральной совокупности она ошибочна, а справедлива альтернативная гипотеза Н1. Такую ошибку называют ошибкой 2- го рода . Вероятность ошибки 2-го рода обозначается как β. Вероятность 1 - β называют мощностью критерия . Статистический критерий — это правило (формула), по которому определяется мера расхождения результатов выборочного наблюдения с высказанной гипотезой Н0. Статистический критерий, как и всякая функция от результатов наблюдения, является случайной величиной и в предположении справедливости нулевой гипотезы Н0 подчинен некоторому хорошо изученному (и затабулированному) теоретическому закону распределения с плотностью распределения f(k). Выбор критерия для проверки статистических гипотез может быть осуществлен на основании различных принципов. Чаще всего для этого пользуются принципом отношения правдоподобия , который позволяет построить критерий, наиболее мощный среди всех возможных критериев. Суть его сводится к выбору такого критерия К с известной функцией плотности f(k) при условии справедливости гипотезы Н 0, чтобы при заданном уровне значимости α можно было бы найти критическую точку К распределения f(k), которая разделила бы область значений критерия на две части: область допустимых значений, в которой результаты выборочного наблюдения выглядят наиболее правдоподобными, и критическую область, в которой результаты выборочного наблюдения выглядят менее правдоподобными в отношении нулевой гипотезы Н0. |
Последнее изменение этой страницы: 2019-05-08; Просмотров: 190; Нарушение авторского права страницы