Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Мутации со сдвигом рамки считывания.



Этот тип мутаций составляет значительную долю спонтанных мутаций. Они происходят вследствие выпадения (делеция) или вставки (инсерция) в нуклеотидную последовательность ДНК одной или нескольких пар комплементарных нуклеотидов.

Мутации по типу инверсии нуклеотидных последовательностей в гене (внутригенная инверсия).

Данный тип мутаций происходит вследствие поворота участка ДНК на 180°. Обычно этому предшествует образование молекулой ДНК петли, в пределах которой репликация идет в направлении, обратном правильному.

В пределах инвертированного участка нарушается считывание информации, в результате изменяется аминокислотная последовательность белка.

Изменения в молекулярной структуре гена ведут к новым формам списывания с него генетической информации, нужной для протекания биохимических процессов в клетке, и приводит к появлению новых свойств в клетке и организме в целом.

 

МЕХАНИЗМЫ ВОЗНИКНОВЕНИЯ МУТАЦИЙ. МУТАГЕНЕЗ И КАНЦЕРОГЕНЕЗ. ГЕНЕТИЧЕСКАЯ ОПАСНОСТЬ ЗАГРЯЗНЕНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ МУТАГЕНАМИ

 

Все факторы мутагенеза могут быть разбиты на три вида: физические, химические и биологические.

Среди физических факторов наибольшее значение имеют ионизирующие излучения. Ионизирующие излучения делят на:

- электромагнитные (волновые), к ним относят рентген-лучи с длиной волны от 0, 005 до 2 нм, гамма-лучи и космические лучи;

- корпускулярные излучения – бета-частицы (электроны и позитроны), протоны, нейтроны (быстрые и тепловые), альфа-частицы (ядра атомов гелия) и др. Проходя через живое вещество, ионизирующие излучения выбивают электроны из внешней оболочки атомов и молекул, что ведет к их химическим превращениям.

Различные животные характеризуются различной чувствительностью к ионизирующим излучениям, которая колеблется от 700 рентген для человека до сотен тысяч и миллионов рентген для бактерий и вирусов. Ионизирующие излучения вызывают в первую очередь изменения в генетическом аппарате клетки. Показано, что ядро клетки в 100 тыс. раз чувствительнее к радиации, чем цитоплазма. Значительно чувствительнее к радиации незрелые половые клетки (сперматогонии), чем зрелые (сперматозоиды). ДНК хромосом наиболее чувствительна к действию радиации. Развивающиеся изменения выражаются в генных мутациях и перестройках хромосом.

Показано, что частота мутаций зависит от общей дозы радиации и прямо пропорциональна дозе облучения.

Ионизирующие излучения действуют на генетический аппарат не только прямо, но и косвенно. Они вызывают радиолиз воды. Возникающие при этом радикалы (Н+, ОН-) оказывают повреждающее действие.

К сильным физическим мутагенам относятся ультрафиолетовые лучи (длина волны до 400 нм), которые не ионизируют атомы, а только возбуждают их электронные оболочки. В итоге в клетках развиваются химические реакции, которые могут приводить к мутации. Частота возникновения мутаций увеличивается с увеличением длины волны до 240-280 нм (соответствует спектру поглощения ДНК). УФ лучи вызывают генные и хромосомные перестройки, но в значительно меньшем количестве, чем ионизирующее излучение.

Гораздо более слабым физическим мутагеном является повышенная температура. Повышение температуры на 10° увеличивает частоту мутации в 3-5 раз. При этом возникают в основном генные мутации у низших организмов. На теплокровных животных с постоянной температурой тела и человека этот фактор не влияет.

Химические мутагены насчитывают множество разнообразных веществ, и их список непрерывно пополняется. Самыми сильными химическими мутагенами являются:

алкилирующие соединения: диметилсульфат; ииприт и его производные – этиленимин, нитрозоалкил-нитрометил, нитрозоэтилмочевина и др. Иногда эти вещества являются супермутагенами и канцерогенами.

Вторую группу химических мутагенов составляют аналоги азотистых оснований (5-бромурацил, 5-бромдезоксиуродин, 8-азогуанин, 2‑ аминопурин, кофеин и др.).

Третью группу составляют акридиновые красители (акридин желтый, оранжевый, профлавин).

Четвертую группу составляют разные по строению вещества: азотистая кислота, гидроксиламин, разные перекиси, уретан, формальдегид.

Химические мутагены могут индуцировать как генные, так и хромосомные мутации. Они вызывают больше генных мутаций, чем ионизирующие излучения и УФ-лучи.

К биологическим мутагенам относят некоторые виды вирусов. Показано, что большинство вирусов человека, животных и растений индуцируют мутации у дрозофилы. Допускается, что молекулы ДНК-вирусов представляют мутагенный элемент. Способность вирусов вызывать мутации обнаружены у бактерий и актиномицетов.

По-видимому, все мутагены, как физические, так и химические, в принципе универсальны, т.е. могут вызывать мутации у любых форм жизни. Для всех известных мутагенов не существует нижнего порога их мутагенного действия.

Мутации вызывают врожденные уродства и наследственные болезни человека. Поэтому насущной задачей является ограждение людей от действия мутагенов. Огромное значение в этом отношении имело запрещение испытаний ядерного оружия в атмосфере. Очень важно соблюдать меры защиты людей от радиации в атомной индустрии, при работе с изотопами, рентген-лучами. Определенную роль могут сыграть антимутагены – вещества, снижающие эффект действия мутагенов (цистеамин, хинакрин, некоторые сульфаниламиды, производные пропионовой и галловой кислот).

 

РЕПАРАЦИЯ ГЕНЕТИЧЕСКОГО МАТЕРИАЛА. МУТАЦИИ, СВЯЗАННЫЕ С НАРУШЕНИЕМ РЕПАРАЦИИ, И ИХ РОЛЬ

В ПАТОЛОГИИ ЧЕЛОВЕКА

Не все повреждения генетического аппарата, вызываемые мутагенами, реализуются в виде мутаций. Многие из них исправляются с помощью особых репарирующих ферментов.

Репарация представляет эволюционно выработанные приспособления, повышающие помехоустойчивость генетической информации и ее стабильность в ряду поколений. Механизм репарации основан на том, что каждая молекула ДНК содержит два полных набора генетической информации, записанной в комплементарных друг другу полинуклеотидных нитях. Это обеспечивает сохранение неискаженной информации в одной нити, даже если другая повреждена, и по неповрежденной нити исправит дефект.

В настоящее время известно три механизма репарации: фотореактивация, темновая репарация, пострепликативная репарация.

Фотореактивация заключается в устранении видимым светом димеров тимина, особенно часто возникающих в ДНК под влиянием УФ-лучей. Замена осуществляется особым фотореактивирующим ферментом, молекулы которого не обладают сродством с неповрежденной ДНК, но опознают димеры тимина и связываются с ними сразу после их образования. Этот комплекс остается стабильным, пока не подвергнется действию видимого света. Видимый свет активирует молекулу фермента, она отделяется от димера тимина и одновременно разъединяет его на два отдельных тимина, восстанавливая исходную структуру ДНК.

Темновая репарация не требует света. Она способна исправлять очень разнообразные повреждения ДНК. Темновая репарация протекает в несколько этапов при участии нескольких ферментов:

1.Молекулы эндонуклеазы постоянно обследуют молекулу ДНК, опознав повреждение, фермент разрезает вблизи него нить ДНК;

2 . Эндо- или экзонуклеаза делает в этой нити второй надрез, иссекая поврежденный участок;

3. Экзонуклеаза значительно расширяет образующуюся брешь, отсекая десятки или сотни нуклеотидов;

Полимераза застраивает брешь в соответствии с порядком нуклеотидов во второй (неповрежденной) нити ДНК.

Световая и темновая репарации наблюдаются до того, как произошла репликация поврежденных молекул. Если же не происходит репликация поврежденных молекул, то дочерние молекулы могут подвергнуться пострепликативной репарации. Механизм ее пока не ясен. Допускается, что при ней бреши в дефектах ДНК могут застраиваться фрагментами, взятыми от неповрежденных молекул.

Предельно важное значение принадлежит генетическим различиям в активности репарирующих ферментов. Подобные различия имеются и у человека. У человека известно заболевание пигментная ксеродерма. Кожа у таких людей чувствительна к солнечным лучам и при их интенсивном воздействии покрывается крупными пигментированными пятнами, изъязвляется и может перерождаться в рак кожи. Пигментная ксеродерма вызывается мутацией, нарушающей механизм репарации повреждений, вызываемых в ДНК кожных клеток УФ-лучами солнечного света.

Явление репарации ДНК распространено от бактерий до человека и имеет большое значение для сохранения стабильности генетической информации, передаваемой из поколения в поколение.

 


Поделиться:



Последнее изменение этой страницы: 2020-02-16; Просмотров: 94; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.015 с.)
Главная | Случайная страница | Обратная связь