Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Тема 12 Метод «дерева решений»



Наглядность часто служит основным мотивом при выборе УР. В этой связи метод «дерева решений» имеет преимущества по сравнению с методом сценариев. Он позволяет руководителю визуально оценить результаты действия различных решений и выбрать наилучший их набор. Данный метод использует модель разветвляющегося но каким-либо условиям процесса. Модель представляет графическое изображение связей основных и последующих вариантов УР.

В ней приводятся сведения о наименованиях УР, основных предполагаемых результатов каждого решения и ожидаемой эффективности.

Это очень полезный метод, в случае тупикового варианта он позволяет отменить дальнейшую проработку всех решений, стоящих до него.

Пример. Юноша хочет отдохнуть, расслабиться после напряженной работы и учебы. Он начинает размышлять. Первая цепочка решений:

пойти куда-нибудь на дискотеку, взять с собой вина, с кем-нибудь повеселиться и, возможно, оказаться в милиции. Конец этого набора плохой, поэтому всю цепочку решений нужно отбросить.

Вторая цепочка решений: пойти в какой-нибудь спортивный тренажерный зал, выбрать интересный вид занятий, усовершенствовать фигуру, поправить здоровье. Результат безусловно хороший, поэтому можно детально проработать и промежуточные решения.

Общая идея «метода дерева» решений графически изображена на рисунке.

Рисунок 1 - Общая идея метода «дерева решений»

Данный метод хорошо сочетается с экспертными методами, так как ряд этапов требуют оценки результатов специалистами.

Реализация метода эффективна для типовых управленческих процессов, по которым накоплен значительный опыт и имеется обширная документация о решениях, условиях их реализации и самих результатах.

Основные этапы разработки или выбора УР по методу «дерева решений»:

1 — составление новой цели развития или совершенствования компании;

2 — сбор материалов о реальном состоянии дел в компании по новой цели;

3 — формулирование проблем как разность между новой целью и обобщенной ситуацией в компании;

4 — выбор или разработка критериев оценки проблемы;

5 — декомпозиция проблемы на самостоятельные составные части;

6 — поиск ресурсов и исполнителей разрешения проблем,

7 — разработка вариантов основных решений и их предполагаемая эффективность;

8 — разработка вариантов детализирующих решений для каждого варианта основных решении;

9 — разработка вариантов очередного набора детализирующих решений для каждого варианта предыдущих детализирующих решений и т.д.;

10 — оценка каждой ветви следующих друг за другом решений на эффективность действий и возможность достижения цели;

11 — выбор наиболее приемлемых сочетаний вариантов решений;

12 — практическая реализация выбранного варианта сочетаний решений.

Метод «дерева решений» весьма успешно используют при разработке компьютерных игр на выбор стратегий, при предварительной проработке вариантов решений.

Метод «дерева решений» не гарантирует высокой эффектив­ности УР и достижения цели.

Метод деревьев решений (decision trees) является одним из наиболее популярных методов решения задач классификации и прогнозирования. Иногда этот метод Data Mining также называют деревьями решающих правил, деревьями классификации и регрессии.

Как видно из последнего названия, при помощи данного метода решаются задачи классификации и прогнозирования.

Если зависимая, т.е. целевая переменная принимает дискретные значения, при помощи метода дерева решений решается задача классификации.

Если же зависимая переменная принимает непрерывные значения, то дерево решений устанавливает зависимость этой переменной от независимых переменных, т.е. решает задачу численного прогнозирования.

Впервые деревья решений были предложены Ховилендом и Хантом (Hoveland, Hunt) в конце 50-х годов прошлого века. Самая ранняя и известная работа Ханта и др., в которой излагается суть деревьев решений - " Эксперименты в индукции" (" Experiments in Induction" ) - была опубликована в 1966 году.

В наиболее простом виде дерево решений - это способ представления правил в иерархической, последовательной структуре. Основа такой структуры - ответы " Да" или " Нет" на ряд вопросов.

На рисунке 2 приведен пример дерева решений, задача которого - ответить на вопрос: " Играть ли в гольф? " Чтобы решить задачу, т.е. принять решение, играть ли в гольф, следует отнести текущую ситуацию к одному из известных классов (в данном случае - " играть" или " не играть" ). Для этого требуется ответить на ряд вопросов, которые находятся в узлах этого дерева, начиная с его корня.

Первый узел нашего дерева " Солнечно? " является узлом проверки, т.е. условием. При положительном ответе на вопрос осуществляется переход к левой части дерева, называемой левой ветвью, при отрицательном - к правой части дерева. Таким образом, внутренний узел дерева является узлом проверки определенного условия. Далее идет следующий вопрос и т.д., пока не будет достигнут конечный узел дерева, являющийся узлом решения. Для нашего дерева существует два типа конечного узла: " играть" и " не играть" в гольф.

В результате прохождения от корня дерева (иногда называемого корневой вершиной) до его вершины решается задача классификации, т.е. выбирается один из классов - " играть" и " не играть" в гольф.


Рисунок 2 - Дерево решений " Играть ли в гольф? "

Целью построения дерева решения в нашем случае является определение значения категориальной зависимой переменной.

Итак, для нашей задачи основными элементами дерева решений являются:

Корень дерева: " Солнечно? "

Внутренний узел дерева или узел проверки: " Температура воздуха высокая? ", " Идет ли дождь? "

Лист, конечный узел дерева, узел решения или вершина: " Играть", " Не играть"

Ветвь дерева (случаи ответа): " Да", " Нет".

В рассмотренном примере решается задача бинарной классификации, т.е. создается дихотомическая классификационная модель. Пример демонстрирует работу так называемых бинарных деревьев.

В узлах бинарных деревьев ветвление может вестись только в двух направлениях, т.е. существует возможность только двух ответов на поставленный вопрос (" да" и " нет" ).

Бинарные деревья являются самым простым, частным случаем деревьев решений. В остальных случаях, ответов и, соответственно, ветвей дерева, выходящих из его внутреннего узла, может быть больше двух.

Рассмотрим более сложный пример. База данных, на основе которой должно осуществляться прогнозирование, содержит следующие ретроспективные данные о клиентах банка, являющиеся ее атрибутами: возраст, наличие недвижимости, образование, среднемесячный доход, вернул ли клиент вовремя кредит. Задача состоит в том, чтобы на основании перечисленных выше данных (кроме последнего атрибута) определить, стоит ли выдавать кредит новому клиенту.

Как мы уже рассматривали в лекции, посвященной задаче классификации, такая задача решается в два этапа: построение классификационной модели и ее использование.

На этапе построения модели, собственно, и строится дерево классификации или создается набор неких правил. На этапе использования модели построенное дерево, или путь от его корня к одной из вершин, являющийся набором правил для конкретного клиента, используется для ответа на поставленный вопрос " Выдавать ли кредит? "

Правилом является логическая конструкция, представленная в виде " если: то: ".

На рисунке 3 приведен пример дерева классификации, с помощью которого решается задача " Выдавать ли кредит клиенту? ". Она является типичной задачей классификации, и при помощи деревьев решений получают достаточно хорошие варианты ее решения.


Рисунок 3 - Дерево решений " Выдавать ли кредит? "

Как мы видим, внутренние узлы дерева (возраст, наличие недвижимости, доход и образование) являются атрибутами описанной выше базы данных. Эти атрибуты называют прогнозирующими, или атрибутами расщепления (splitting attribute). Конечные узлы дерева, или листы, именуются метками класса, являющимися значениями зависимой категориальной переменной " выдавать" или " не выдавать" кредит.

Каждая ветвь дерева, идущая от внутреннего узла, отмечена предикатом расщепления. Последний может относиться лишь к одному атрибуту расщепления данного узла. Характерная особенность предикатов расщепления: каждая запись использует уникальный путь от корня дерева только к одному узлу-решению. Объединенная информация об атрибутах расщепления и предикатах расщепления в узле называется критерием расщепления (splitting criterion) [33].

На рисунке 3 изображено одно из возможных деревьев решений для рассматриваемой базы данных. Например, критерий расщепления " Какое образование? ", мог бы иметь два предиката расщепления и выглядеть иначе: образование " высшее" и " не высшее". Тогда дерево решений имело бы другой вид.

Таким образом, для данной задачи (как и для любой другой) может быть построено множество деревьев решений различного качества, с различной прогнозирующей точностью.

Качество построенного дерева решения весьма зависит от правильного выбора критерия расщепления. Над разработкой и усовершенствованием критериев работают многие исследователи.

Метод деревьев решений часто называют " наивным" подходом [34]. Но благодаря целому ряду преимуществ, данный метод является одним из наиболее популярных для решения задач классификации.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-03-17; Просмотров: 1668; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.014 с.)
Главная | Случайная страница | Обратная связь