Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Элементы общей теории относительности
Благодаря специальной теории относительности в физике создается новый взгляд на характер физический, законов, «наисовершеннейшим выражением которых считается теперь их инвариантное выражение». Несмотря на революционность специальной теории относительности, приведшей к коренному изменению наших представлений о пространстве и времени, тем не менее, возникает чувство некоторой незавершенности теории. И связано это с тем, что специальная теория относительности так же, как и классическая механика, сохраняет привилегированное положение наблюдателей, находящихся в инерциальных системах отсчета. А как быть с наблюдателями, находящимися в системах отсчета, движущихся по отношению к первым с ускорением (в неинерциальных системах отсчета)? Чем объясняется неинвариантность законов физики в неинерциальных системах отсчета? Правомерно ли это? Подобное положение дел казалось неудовлетворительным. Эйнштейн, повторяя вопрос Э. Маха: «Почему инерциаль-ные системы физически выделены относительно других систем отсчета? », первым обращает внимание на то, что специальная теория относительности (СТО) не дает на него ответа. Следующая проблема возникла при попытке представить в рамках СТО тяготение. Оказалось, что тяготение укладывается в рамки специальной теории относительности только в том случае, если потенциал гравитационного поля постоянен. Если же гравитационное поле переменно, то глобальная лоренц-инвариантность, в основе которой лежит однородность всех точек пространства, не работает2. Эйнштейном была выяснена причина этого: она состоит в том, что не только инертная масса зависит от энергии, но и гравитационная. Галилеем был установлен закон, согласно которому все тела падают, при отсутствии сопротивления среды, с одинаковым ускорением. Это является следствием равенства инертной и гравитационной (весомой) массы. Равенство инертной и гравитационной массы соблюдается с точностью выше одной двадцатимиллионной, что было показано в серии весьма точных опытов, проделанных Р. Этвешем. Тем не менее, это равенство не получило объяснения в физической теории. В 1908 году Эйнштейн доказывает, что каждому количеству энергии в гравитационном поле соответствует энергия, по величине равная энергии инертной массы величиной Е/с2, и делает вывод о том, что закон этот выполняется не только для инертной, но и для гравитационной массы. Рассматривая факт равенства инертной и гравитационной массы, Эйнштейн приходит к выводу о том, что гравитационное поле (в котором проявляется гравитационная масса) эквивалентно ускоренному движению (в котором проявляется масса инертная) и формулирует принцип эквивалентности, который и был положен в основу создания общей теории относительности: «Факт равенства инертной и весомой массы или, иначе, тот факт, что ускорение свободного падения не зависит от природы падающего вещества, допускает и иное выражение. Его можно выразить так: в поле тяготения (малой пространственной протяженности) все происходит так, как в пространстве без тяготения, если в нем вместо «инерциальной» системы отсчета ввести систему, ускоренную относительно нее». Принцип эквивалентности Эйнштейн называл «счастливейшей мыслью в моей жизни». Как уже отмечалось, попытки включения тяготения в специальную теорию относительности наталкивались на серьезные трудности, так как в этом случае не работает глобальная лоренц-инвари-антность. Эйнштейн приходит к выводу о том, что главная задача состоит не в том, как включить тяготение в СТО, а в том, как использовать тяготение для обобщения требования инвариантности к любым типам движения, в том числе и ускоренным. Оказалось, что тяготение не может быть полностью заменено ускорением (гравитационные силы — силами инерции) в больших областях с неоднородным гравитационным полем. Сведение гравитационного поля к ускоренным системам отсчета требует ограничения принципа эквивалентности бесконечно малыми масштабами. Иными словами, принцип эквивалентности имеет локальное значение. Локальный характер принципа эквивалентности приводит к представлениям о мире, отличном от плоского евклидова пространства, для которого сумма углов треугольника всегда равно 180 градусов. Это мир — с кривизной пространственно-временного континуума. Случилось так, что в математике уже были развиты теории неевклидовой дифференциальной геометрии — теория Лобачевского и теория Римана. В общей теории относительности инвариантность физических законов в системах отсчета, в которых действуют гравитационные силы (или которые являются неинерциальными), достигается относительно локальных преобразований в римановом четырехмерном пространстве-времени положительной кривизны. Иными словами, гравитационное поле может интерпретироваться как следствие искривления пространства. Итак, в результате восьмилетних размышлений над природой тяготения (с 1907 по 1915 год) Эйнштейн в полемике и при поддержке ряда крупных физиков и математиков пришел к созданию общей теории относительности — теории, распространяющей принцип относительности на любые системы отсчета и в то же время представляющей из себя более общую теорию тяготения, содержащую в себе теорию тяготения Ньютона как предельный случай. Специальная теория относительности имеет глубокое экспериментальное подтверждение и является мощным аппаратом в ядерной физике и физике элементарных частиц. Следует отметить существовавший в ряду физиков скепсис по поводу возможной экспериментальной проверяемости общей теории относительности, который, однако, просуществовал недолго. Первое экспериментальное подтверждение теории состояло в объяснении аномального движения планеты Меркурий, чего не удавалось сделать на основе теории Ньютона. Меркурий — это наиболее близкая к Солнцу планета- Согласно общей теории относительности, эллиптическая траектория движения планет должна медленно поворачиваться вокруг Солнца. Леверрье было открыто вековое вращение орбиты Меркурия, составляющее около 45" в столетие (ясно, что для остальных планет оно еще меньшее). Результат этот не согласовывался с расчетами, полученными на основе ньютоновского закона всемирного тяготения. Результаты расчета по общей теории относительности продемонстрировали полное совпадение с данными астрономических наблюдений. Далее, следствием теории является более сильное (в два раза большее) искривление светового луча гравитационным полем, нежели это было получено из опытов, проведенных Зольденером в 1804 году. Экспедиции, наблюдавшие солнечные затмения 29 мая в 1919 году и 21 сентября 1921 года обнаружили, что искривление света близко к значению, предсказываемому общей теории относительности. И, наконец, третий экспериментальный результат не только соответствовал теории, но и дал мощный импульс для развития на базе общей теории относительности науки о происхождении и эволюции Вселенной — космологии. Речь идет об открытии в 1929 году Хабблом смещения спектральных линий излучения звезд в сторону красного света, так называемое «красное смещение», свидетельствующее о том, что Вселенная, в которой мы обитаем, не статична, а расширяется, так что всевозможные галактики разбегаются. Несколько ранее, в 1922-1924 годах, А. Фридманом были получены решения общей теории относительности для нестационарной Вселенной, расширяющейся в настоящую эпоху, что и было экспериментально подтверждено открытием Хаббла. Современные космологические модели еще более развивают представления о пространстве-времени нашей Вселенной. Здесь ставятся вопросы о том, почему пространство мира, в котором мы живем, трехмерно? Возможна ли жизнь нашего типа в пространстве с большим числом измерений? Что представляет собой пространство в масштабах порядка 10-33 см? Каковы его метрика и топология? Как связаны между собой известные типы физических взаимодействий и пространственно-временная структура нашей Вселенной? Эти и другие вопросы будут рассмотрены в следующих главах этой книги. Ведь, по существу, вопрос о пространстве и времени известного мира — это вопрос всей современной науки. Вот почему он не укладывается в размер одной главы, а требует ознакомления с другими важными разделами физики. В настоящей главе часто упоминается понятие «энергия». Поэтому мы позволим себе перелистать странички истории назад и рассмотреть, как это фундаментальное понятие вошло в структуру физической науки, чему и посвящена следующая глава книги. Вопросы для самоконтроля 1. Каковы причины введения Ньютоном понятий аб 2. Объясните, как вы понимаете «себетождественность», 3. Что означает детерминизм поведения объектов в 4. Перечислите основные принципы механистической 5. Сформулируйте принцип дальнедействия и принцип 6. Какую роль сыграла концепция эфира в формирова 7. Чем отличаются инерциальные и неинерциальные 8. В чем суть принципа относительности Галилея? Как 9. Расскажите о предпосылках возникновения специ
10. Сделайте критический разбор понятия одновремен 11. Дайте понятие мирового интервала. В чем состо 12. Каковы мотивы создания общей теории относитель 13. Что означают термины «глобальная инвариант 14. Расскажите об экспериментальных подтверждени Популярное:
|
Последнее изменение этой страницы: 2016-03-22; Просмотров: 1013; Нарушение авторского права страницы