Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Уравнения идеального трансформатора



Закон Фарадея

См. также: Электромагнитная индукция

ЭДС, создаваемая во вторичной обмотке, может быть вычислена по закону Фарадея, который гласит:

Где

— напряжение на вторичной обмотке,

— число витков во вторичной обмотке,

— суммарный магнитный поток, через один виток обмотки. Если витки обмотки расположены перпендикулярно линиям магнитного поля, то поток будет пропорционален магнитному полю и площади через которую он проходит.

ЭДС, создаваемая в первичной обмотке, соответственно:

Где

— мгновенное значение напряжения на концах первичной обмотки,

— число витков в первичной обмотке.

Поделив уравнение на , получим отношение[8]:

Уравнения идеального трансформатора

Идеальный трансформатор — трансформатор, у которого отсутствуют потери энергии на гистерезис и вихревые токи и потоки рассеяния обмоток[9]. В идеальном трансформаторе все силовые линии проходят через все витки обеих обмоток, и поскольку изменяющееся магнитное поле порождает одну и ту же ЭДС в каждом витке, суммарная ЭДС, индуцируемая в обмотке, пропорциональна полному числу её витков[10]. Такой трансформатор всю поступающую энергию из первичной цепи трансформирует в магнитное поле и затем в энергию вторичной цепи. В этом случае поступающая энергия равна преобразованной энергии:

Где

— мгновенное значение поступающей на трансформатор мощности, которая возникает в первичной цепи,

— мгновенное значение преобразованной трансформатором мощности, поступающей во вторичную цепь.

Соединив это уравнение с отношением напряжений на концах обмоток, получим уравнение идеального трансформатора:

Таким образом получаем, что при увеличении напряжения на концах вторичной обмотки , уменьшается ток вторичной цепи .

Для преобразования сопротивления одной цепи к сопротивлению другой, нужно умножить величину на квадрат отношения.[11] Например, сопротивление подключено к концам вторичной обмотки, его приведённое значение к первичной цепи будет . Данное правило справедливо также и для первичной цепи: .

Модель реального трансформатора

В модели идеального трансформатора для упрощения не учитываются некоторые явления, наблюдаемые на практике и которыми не всегда можно пренебречь:

Наличие межобмоточной, межслоевой и межвитковой емкостей

Наличие проводников, разделённых диэлектриком приводит к возникновению паразитных ёмкостей между обмотками, слоями и витками. Моделирование этого явления производится введением т. н. продольных и поперечных емкостей. К поперечным относят межслоевую и межобмоточные ёмкости. К продольным — межвитковые и межкатушечные.

Режимы работы трансформатора

Режим холостого хода. Данный режим характеризуется разомкнутой вторичной цепью трансформатора, вследствие чего ток в ней не течёт. С помощью опыта холостого хода можно определить КПД трансформатора, коэффициент трансформации, а также потери в сердечнике.

Нагрузочный режим. Этот режим характеризуется работой трансформатора с подключенными источником в первичной и нагрузкой во вторичной цепи трансформатора. Данный режим является основным рабочим для трансформатора.

Режим короткого замыкания. Этот режим получается в результате замыкания вторичной цепи накоротко. С его помощью можно определить потери полезной мощности на нагрев проводов в цепи трансформатора. Это учитывается в схеме замещения реального трансформатора при помощи активного сопротивления.

Режим холостого хода

Когда вторичные обмотки ни к чему не подключены (режим холостого хода), ЭДС индукции в первичной обмотке практически полностью[12] компенсирует напряжение источника питания, поэтому ток, протекающий через первичную обмотку, равен переменному току намагничивания, нагрузочные токи отсутствуют. Для трансформатора с сердечником из магнитомягкого материала (ферромагнитного материала, трансформаторной стали) ток холостого хода характеризует величину потерь в сердечнике (на вихревые токи и на гистерезис) и реактивную мощность перемагничивания магнитопровода. Мощность потерь можно вычислить, умножив активную составляющую тока холостого хода на напряжение, подаваемое на трансформатор.

Для трансформатора без ферромагнитного сердечника потери на перемагничивание отсутствуют, а ток холостого хода определяется сопротивлением индуктивностипервичной обмотки, которое пропорционально частоте переменного тока и величине индуктивности.

Векторная диаграмма напряжений и токов в трансформаторе на холостом ходу при согласном включении обмоток приведена в[13] на рис.1.8 б).

Напряжение на вторичной обмотке в первом приближении определяется законом Фарадея.

Режим короткого замыкания

В режиме короткого замыкания, на первичную обмотку трансформатора подаётся переменное напряжение небольшой величины, выводы вторичной обмотки соединяют накоротко. Величину напряжения на входе устанавливают такую, чтобы ток короткого замыкания равнялся номинальному (расчётному) току трансформатора. В таких условиях величина напряжения короткого замыкания характеризует потери в обмотках трансформатора, потери на омическом сопротивлении. Мощность потерь можно вычислить, умножив напряжение короткого замыкания на ток короткого замыкания .

Данный режим широко используется в измерительных трансформаторах тока.

Режим с нагрузкой

При подключении нагрузки к вторичной обмотке во вторичной цепи возникает нагрузочный ток, создающий магнитный поток в магнитопроводе, направленный противоположно магнитному потоку, создаваемому первичной обмоткой. В результате в первичной цепи нарушается равенство ЭДС индукции и ЭДС источника питания, что приводит к увеличению тока в первичной обмотке до тех пор, пока магнитный поток не достигнет практически прежнего значения.

Схематично, процесс преобразования можно изобразить следующим образом:

Мгновенный магнитный поток в магнитопроводе трансформатора определяется интегралом по времени от мгновенного значения ЭДС в первичной обмотке и в случае синусоидального напряжения сдвинут по фазе на 90° по отношению к ЭДС. Наведённая во вторичных обмотках ЭДС пропорциональна первой производной от магнитного потока и для любой формы тока совпадает по фазе и форме с ЭДС в первичной обмотке. Векторная диаграмма напряжений и токов в трансформаторе с нагрузкой при согласном включении обмоток приведена в[13] на рис.1.6 в).

Теория трансформаторов

Потери в трансформаторах

Степень потерь (и снижения КПД) в трансформаторе зависит, главным образом, от качества, конструкции и материала «трансформаторного железа» (электротехническая сталь). Потери в стали состоят в основном из потерь на нагрев сердечника, на гистерезис и вихревые токи. Потери в трансформаторе, где «железо» монолитное, значительно больше, чем в трансформаторе, где оно составлено из многих секций (так как в этом случае уменьшается количество вихревых токов). На практике монолитные сердечники не применяются. Для снижения потерь в магнитопроводе трансформатора магнитопровод может изготавливаться из специальных сортов трансформаторной стали с добавлением кремния, который повышает удельное сопротивление железа электрическому току, а сами пластины лакируются для изоляции друг от друга.

Габаритная мощность

Габаритная мощность трансформатора описывается следующей формулой:

· — первичной обмотки

· — вторичной обмотки

Габаритная мощность, как следует из названия, определяется габаритами сердечника и материалом, его магнитными и частотными свойствами.

КПД трансформатора [править | править исходный текст]

КПД трансформатора находится по следующей формуле:

где

— потери холостого хода (кВт) при номинальном напряжении

— нагрузочные потери (кВт) при номинальном токе

— активная мощность (кВт), подаваемая на нагрузку

— относительная степень нагружения (при номинальном токе ).

Виды трансформаторов

Трансформатор

Мачтовая трансформаторная подстанция с трёхфазным понижающим трансформатором

Силовой трансформатор

Основная статья: Силовой трансформатор

Силовой трансформатор переменного тока — трансформатор, предназначенный для преобразования электрической энергии в электрических сетях и в установках, предназначенных для приёма и использования электрической энергии. Слово «силовой» отражает работу данного вида трансформаторов с большими мощностями. Необходимость применения силовых трансформаторов обусловлена различной величиной рабочих напряжений ЛЭП (35-750 кВ), городских электросетей (как правило 6, 10 кВ), напряжения, подаваемого конечным потребителям (0, 4 кВ, они же 380/220 В) и напряжения, требуемого для работы электромашин и электроприборов (самые различные от единиц вольт до сотен киловольт).

Силовой трансформатор постоянного тока используется для непосредственного преобразования напряжения в цепях постоянного тока. Термин «силовой» показывает отличие таких трансформаторов от измерительных устройств класса «Трансформатор постоянного тока».

Автотрансформатор

Основная статья: Автотрансформатор

Автотрансформа́ тор — вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только электромагнитную связь, но и электрическую. Обмотка автотрансформатора имеет несколько выводов (как минимум 3), подключаясь к которым, можно получать разные напряжения. Преимуществом автотрансформатора является более высокий КПД, поскольку лишь часть мощности подвергается преобразованию — это особенно существенно, когда входное и выходное напряжения отличаются незначительно.

Недостатком является отсутствие электрической изоляции (гальванической развязки) между первичной и вторичной цепью. Применение автотрансформаторов экономически оправдано вместо обычных трансформаторов для соединения эффективно заземленных сетей с напряжением 110 кВ и выше при коэффициентах трансформации не более 3-4. Существенным достоинством является меньший расход стали для сердечника, меди для обмоток, меньший вес и габариты, и в итоге — меньшая стоимость.

Трансформатор тока

Основная статья: Трансформатор тока

Трансформа́ тор то́ ка — трансформатор, питающийся от источника тока. Типичное применение — для снижения первичного тока до величины, используемой в цепях измерения, защиты, управления и сигнализации, кроме того, трансформатор тока осуществляет гальваническую развязку (отличие от шунтовых схем измерения тока). Номинальное значение тока вторичной обмотки 1 А, 5 А. Первичная обмотка трансформатора тока включается в цепь с измеряемым переменным током, а во вторичную включаются измерительные приборы. Ток, протекающий по вторичной обмотке трансформатора тока, равен току первичной обмотки, деленному на коэффициент трансформации. ВНИМАНИЕ! Вторичная обмотка токового трансформатора должна быть надёжно замкнута на низкоомную нагрузку измерительного прибора или накоротко. При случайном или умышленном разрыве цепи возникает скачок напряжения, опасный для изоляции, окружающих электроприборов и жизни техперсонала! Поэтому по правилам технической эксплуатации необходимо неиспользуемые вторичные обмотки закорачивать, а все вторичные обмотки трансформаторов тока подлежат заземлению.

Трансформатор напряжения

Основная статья: Трансформатор напряжения

Трансформатор напряжения — трансформатор, питающийся от источника напряжения. Типичное применение — преобразование высокого напряжения в низкое в цепях, в измерительных цепях и цепях РЗиА. Применение трансформатора напряжения позволяет изолировать логические цепи защиты и цепи измерения от цепи высокого напряжения.

Импульсный трансформатор

Основная статья: Импульсный трансформатор

Импульсный трансформатор — это трансформатор, предназначенный для преобразования импульсных сигналов с длительностью импульса до десятков микросекунд с минимальным искажением формы импульса[14]. Основное применение заключается в передаче прямоугольного электрического импульса (максимально крутой фронт и срез, относительно постоянная амплитуда). Он служит для трансформации кратковременных видеоимпульсов напряжения, обычно периодически повторяющихся с высокой скважностью. В большинстве случаев основное требование, предъявляемое к ИТ заключается в неискажённой передаче формы трансформируемых импульсов напряжения; при воздействии на вход ИТ напряжения той или иной формы на выходе желательно получить импульс напряжения той же самой формы, но, быть может, иной амплитуды или другой полярности.

Согласующий трансформатор

Основная статья: Согласующий трансформатор

Согласующий трансформатор — трансформатор, применяемый для согласования сопротивления различных частей (каскадов) электронных схем при минимальном искажении формы сигнала. Одновременно согласующий трансформатор обеспечивает создание гальванической развязки между участками схем.

Пик-трансформатор

Основная статья: Пик-трансформатор

Пик-трансформатор — трансформатор, преобразующий напряжение синусоидальной формы в импульсное напряжение с изменяющейся через каждые полпериода полярностью.

Сдвоенный дроссель

Основная статья: Катушка индуктивности

Сдвоенный дроссель (встречный индуктивный фильтр) — конструктивно является трансформатором с двумя одинаковыми обмотками. Благодаря взаимной индукции катушек он при тех же размерах более эффективен, чем обычный дроссель. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания; в дифференциальных сигнальных фильтрах цифровых линий, а также в звуковой технике.

Трансфлюксор

Трансфлюксор — разновидность трансформатора, используемая для хранения информации[16][17]. Основное отличие от обычного трансформатора — это большая величина остаточной намагниченности магнитопровода. Иными словами трансфлюксоры могут выполнять роль элементов памяти. Помимо этого трансфлюксоры часто снабжались дополнительными обмотками, обеспечивающими начальное намагничивание и задающими режимы их работы. Эта особенность позволяла (в сочетании с другими элементами) строить на трансфлюксорах схемы управляемых генераторов, элементов сравнения и искусственных нейронов.

Основные части конструкции трансформатора

Основными частями конструкции трансформатора являются:

· магнитопровод

· обмотки

· каркас для обмоток

· изоляция

· система охлаждения

· прочие элементы (для монтажа, доступа к выводам обмоток, защиты трансформатора и т. п.)

В практичной конструкции трансформатора производитель выбирает между тремя различными базовыми концепциями:

· Стержневой

· Броневой

· Тороидальный

Любая из этих концепций не влияет на эксплуатационные характеристики или эксплуатационную надёжность трансформатора, но имеются существенные различия в процессе их изготовления. Каждый производитель выбирает концепцию, которую он считает наиболее удобной с точки зрения изготовления, и стремится к применению этой концепции на всём объёме производства.

В то время как обмотки стержневого типа заключают в себе сердечник, сердечник броневого типа заключает в себе обмотки. Если смотреть на активный компонент (т. e. сердечник с обмотками) стержневого типа, обмотки хорошо видны, но они скрывают за собой стержни магнитной системы сердечника. Видно только верхнее и нижнее ярмо сердечника. В конструкции броневого типа сердечник скрывает в себе основную часть обмоток.

Ещё одно отличие состоит в том, что ось обмоток стержневого типа, как правило, имеет вертикальное положение, в то время как в броневой конструкции она может быть горизонтальной или вертикальной.

 

Магнитная система (магнитопровод)

Магнитная система (магнитопровод) трансформатора выполняется из электротехнической стали, пермаллоя, феррита или другого ферромагнитного материала в определённой геометрической форме. Предназначается для локализации в нём основного магнитного поля трансформатора. Магнитопровод в зависимости от материала и конструкции может набираться из пластин, прессоваться, навиваться из тонкой ленты, собираться из 2-х, 4-х и более «подков». Магнитная система в полностью собранном виде совместно со всеми узлами и деталями, служащими для скрепления отдельных частей в единую конструкцию, называется остовом трансформатора.

Часть магнитной системы, на которой располагаются основные обмотки трансформатора, называется стержень.
Часть магнитной системы трансформатора, не несущая основных обмоток и служащая для замыкания магнитной цепи, называется ярмо

В зависимости от пространственного расположения стержней, выделяют:

1. Плоская магнитная система — магнитная система, в которой продольные оси всех стержней и ярм расположены в одной плоскости

2. Пространственная магнитная система — магнитная система, в которой продольные оси стержней или ярм, или стержней и ярм расположены в разных плоскостях

3. Симметричная магнитная система — магнитная система, в которой все стержни имеют одинаковую форму, конструкцию и размеры, а взаимное расположение любого стержня по отношению ко всем ярмам одинаково для всех стержней

4. Несимметричная магнитная система — магнитная система, в которой отдельные стержни могут отличаться от других стержней по форме, конструкции или размерам или взаимное расположение какого-либо стержня по отношению к другим стержням или ярмам может отличаться от расположения любого другого стержня

Обмотки

Транспонированный кабель, применяемый в обмотке трансформатора

Дисковая обмотка

Основным элементом обмотки является виток — электрический проводник, или ряд параллельно соединённых таких проводников (многопроволочная жила), однократно обхватывающий часть магнитной системы трансформатора, электрический ток которого совместно с токами других таких проводников и других частей трансформатора создаёт магнитное поле трансформатора и в котором под действием этого магнитного поля наводится электродвижущая сила.

Обмотка — совокупность витков, образующих электрическую цепь, в которой суммируются ЭДС, наведённые в витках. В трёхфазном трансформаторе под обмоткой обычно подразумевают совокупность обмоток одного напряжения трёх фаз, соединяемых между собой.

Сечение проводника обмотки в силовых трансформаторах обычно имеет квадратную форму для наиболее эффективного использования имеющегося пространства (для увеличения коэффициента заполнения в окне сердечника). При увеличении площади сечения проводника он может быть разделён на два и более параллельных проводящих элементов с целью снижения потерь на вихревые токи в обмотке и облегчения функционирования обмотки. Проводящий элемент квадратной формы называется жилой.

Каждая жила изолируется при помощи либо бумажной обмотки, либо эмалевого лака. Две отдельно изолированных и параллельно соединённых жилы иногда могут иметь общую бумажную изоляцию. Две таких изолированных жилы в общей бумажной изоляции называются кабелем.

Особым видом проводника обмотки является непрерывно транспонированный кабель. Этот кабель состоит из жил, изолированных при помощи двух слоёв эмалевого лака, расположенных в осевом положении друг к другу, как показано на рисунке. Непрерывно транспонированный кабель получается путём перемещения внешней жилы одного слоя к следующему слою с постоянным шагом и применения общей внешней изоляции[18].

Бумажная обмотка кабеля выполнена из тонких (несколько десятков микрометров) бумажных полос шириной несколько сантиметров, намотанных вокруг жилы. Бумага заворачивается в несколько слоёв для получения требуемой общей толщины.

Обмотки разделяют по:

1. Назначению

2. Основные — обмотки трансформатора, к которым подводится энергия преобразуемого или от которых отводится энергия преобразованного переменного тока.

3. Регулирующие — при невысоком токе обмотки и не слишком широком диапазоне регулирования, в обмотке могут быть предусмотрены отводы для регулирования коэффициента трансформации напряжения.

4. Вспомогательные — обмотки, предназначенные, например, для питания сети собственных нужд с мощностью существенно меньшей, чем номинальная мощность трансформатора, для компенсации третей гармонической магнитного поля, подмагничивания магнитной системы постоянным током, и т. п.

5. Исполнению

6. Рядовая обмотка — витки обмотки располагаются в осевом направлении во всей длине обмотки. Последующие витки наматываются плотно друг к другу, не оставляя промежуточного пространства.

7. Винтовая обмотка — винтовая обмотка может представлять собой вариант многослойной обмотки с расстояниями между каждым витком или заходом обмотки.

· Дисковая обмотка — дисковая обмотка состоит из ряда дисков, соединённых последовательно. В каждом диске витки наматываются в радиальном направлении в виде спирали по направлению внутрь и наружу на соседних дисках.

· Фольговая обмотка — фольговые обмотки выполняются из широкого медного или алюминиевого листа толщиной от десятых долей миллиметра до нескольких миллиметров.

Бак

Особенности конструкции

Бак в первую очередь представляет собой резервуар для трансформаторного масла, а также обеспечивает физическую защиту для активного компонента. Он также служит в качестве опорной конструкции для вспомогательных устройств и аппаратуры управления.

Перед заполнением маслом бака с активным компонентом внутри из него выкачивается весь воздух, который может подвергнуть опасности диэлектрическую прочность изоляции трансформатора (поэтому бак предназначен для выдерживания давления атмосферы с минимальной деформацией).

При увеличении номинальной мощности трансформатора воздействие больших токов внутри и снаружи трансформатора оказывает влияние на конструкцию. Тоже самое происходит с магнитным потоком рассеяния внутри бака. Вставки из немагнитного материала вокруг сильноточных проходных изоляторов снижают риск перегрева. Внутренняя облицовка бака из высокопроводящих щитков не допускает попадания потока через стенки бака. С другой стороны, материал с низким магнитным сопротивлением поглощает поток перед его прохождением через стенки бака.

Ещё одним явлением, учитываемым при проектировании баков, является совпадение звуковых частот, вырабатываемых сердечником трансформатора, и частотрезонанса деталей бака, что может усилить шум, излучаемый в окружающую среду.

Варианты исполнения

Конструкция бака допускает температурно-зависимое расширение масла. Исходя из этого трансформаторные баки делятся по конструктивному исполнению:

1. Трансформаторы с гладким баком без расширителя (такая конструкция применяется для мощностей вплоть до 10кВА), выводы смонтированы на крышке. Температурная компенсация расширения масла производится за счёт неполного заполнения бака и создания в верхней части воздушной подушки.

2. Трансформаторы с расширительным баком (вплоть до 63 кВА), выводы расположены на крышке.

3. Трансформаторы с расширительным баком и радиаторами, выводы расположены на крышке. В старых конструкциях радиаторы выполнялись в виде гнутых труб, приваренных к баку — т. н. «трубчатый бак».

4. Трансформаторы с расширительным баком, радиаторами и выводами на стенках бака на специальных фланцах (фланцевое крепление). Этот тип трансформатора имеет в обозначении литеру «Ф» и предназначается для непосредственной установки в производственном помещении («цеховое исполнение»).

5. Трансформаторы с радиаторами, без расширителя, фланцевого крепления. Компенсация температурного расширения масла производится созданием в верхней части газовой подушки из инертного газа — азота (для исключения окисления масла воздухом). Такие трансформаторы также относятся к типу цеховых и имеют в обозначении литеру «З» — защищённое исполнение. Аварийный сброс давления производится специальным клапаном.

6. Трансформаторы без расширителя, без радиаторов с гофробаком. Наиболее современная конструкция. Компенсация температурного изменения объёма масла происходит с помощью специальной конструкции бака с гофрированными стенками из тонкой стали (гофробак). Расширение масла сопровождается раздвиганием гофр бака. Аварийный сброс давления масла (например при внутренних повреждениях) производится специальным клапаном. Такие трансформаторы имеют в обозначении литеру «Г» — герметичное исполнение.

Обозначение на схемах

На схемах трансформатор обозначается следующим образом:

Центральная толстая линия соответствует сердечнику, 1 — первичная обмотка (обычно слева), 2 и 3 — вторичные обмотки. Число полуокружностей в очень грубом приближении символизирует число витков обмотки (больше витков — больше полуокружностей, но без строгой пропорциональности).

При обозначении трансформатора жирной точкой около вывода могут быть указаны начала катушек (не менее чем на двух катушках, знаки мгновенно действующей ЭДС на этих выводах одинаковы). Применяется при обозначении промежуточных трансформаторов в усилительных (преобразовательных) каскадах для подчёркивание син- или противофазности, а также в случае нескольких (первичных или вторичных) обмоток, если соблюдение «полярности» их подключения необходимо для работы остальной части схемы. Если начала обмоток не указаны явно, то предполагается, что все они направлены в одну сторону (после конца одной обмотки — начало следующей).

В схемах трёхфазных трансформаторах «обмотки» располагают перпендикулярно «сердечнику» (Ш-образно, вторичные обмотки напротив соответствующих первичных), начала всех обмоток направлены в сторону «сердечника».

Применение трансформаторов

Наиболее часто трансформаторы применяются в электросетях и в источниках питания различных приборов.

Применение в электросетях

Поскольку потери на нагревание провода пропорциональны квадрату тока, проходящего через провод, при передаче электроэнергии на большое расстояние выгодно использовать очень большие напряжения и небольшие токи. Из соображений безопасности и для уменьшения массы изоляции в быту желательно использовать не столь большие напряжения. Поэтому для наиболее выгодной транспортировки электроэнергии в электросети многократно применяют силовые трансформаторы: сначала для повышения напряжения генераторов на электростанциях перед транспортировкой электроэнергии, а затем для понижения напряжения линии электропередач до приемлемого для потребителей уровня.

Поскольку в электрической сети три фазы, для преобразования напряжения применяют трёхфазные трансформаторы, или группу из трёх однофазных трансформаторов, соединённых в схему звезды или треугольника. У трёхфазного трансформатора сердечник для всех трёх фаз общий.

Несмотря на высокий КПД трансформатора (для трансформаторов большой мощности — свыше 99 %), в очень мощных трансформаторах электросетей выделяется большая мощность в виде тепла (например, для типичной мощности блока электростанции 1 ГВт на трансформаторе может выделяться мощность до нескольких мегаватт). Поэтому трансформаторы электросетей используют специальную систему охлаждения: трансформатор помещается в баке, заполненном трансформаторным маслом или специальной негорючей жидкостью. Масло циркулирует под действием конвекции или принудительно между баком и мощным радиатором. Иногда масло охлаждают водой. «Сухие» трансформаторы используют при относительно малой мощности (до 16 000 кВт).

Срок службы

Срок службы трансформатора может быть разделен на две категории:

1. Экономический срок службы — экономический срок службы заканчивается, когда капитализированная стоимость непрерывной работы существующего трансформатора превысит капитализированную стоимость доходов от эксплуатации этого трансформатора. Или экономический срок жизни трансформатора (как актива) заканчивается тогда, когда удельные затраты на трансформацию энергии с его помощью становятся выше удельной стоимости аналогичных услуг на рынке трансформации энергии.

2. Технический срок службы

Частота

При одинаковых напряжениях первичной обмотки трансформатор, разработанный для частоты 50 Гц, может использоваться при частоте сети 60 Гц, но не наоборот. При этом необходимо принять во внимание, что возможно потребуется заменить навесное электрооборудование. При частоте меньше номинальной увеличивается индукция в магнитопроводе, что может повлечь его насыщение и как следствие резкое увеличение тока холостого хода и изменение его формы. При частоте больше номинальной повышается величина паразитных токов в магнитопроводе, повышенный нагрев магнитопровода и обмотки, приводящие к ускоренному старению и разрушению изоляции.

Виды перенапряжений

В процессе использования трансформаторы могут подвергаться напряжению, превосходящему рабочие параметры. Данные перенапряжения классифицируются по их продолжительности на две группы:

· Кратковременное перенапряжение — напряжение промышленной частоты относительной продолжительности, колеблющейся в пределах менее 1 секунды до нескольких часов.

· Переходное перенапряжение — кратковременное перенапряжение в пределах от наносекунд до нескольких миллисекунд. Период нарастания может колебаться от нескольких наносекунд до нескольких миллисекунд. Переходное перенапряжение может быть колебательным и неколебательным. Они обычно имеют однонаправленное действие.

Трансформатор также может быть подвергнут комбинации кратковременных и переходных перенапряжений. Кратковременные перенапряжения могут следовать сразу за переходными перенапряжениями.

Перенапряжения классифицируются на две основные группы, характеризующих их происхождение:

· Перенапряжения, вызванные атмосферными воздействиями. Чаще всего переходные перенапряжения возникают вследствие грозовых разрядов вблизи высоковольтных линий передач, подсоединенных к трансформатору, однако иногда грозовой импульс может поразить трансформатор или саму линию передачи. Пиковая величина напряжения зависит от тока грозового импульса, является статистической переменной. Зарегистрированы токи грозового импульса свыше 100 кА. В соответствии с измерениями, проведенными на высоковольтных линиях электропередач в 50 % случаях пиковая величина токов грозового импульса находится в пределах от 10 до 20 кА. Расстояние между трансформатором и точкой воздействия грозового импульса влияет на время нарастания импульса, поразившего трансформатор, чем короче расстояние до трансформатора, тем короче время.

· Перенапряжения, сформированные внутри силовой системы. Данная группа охватывает как кратковременные так и переходные перенапряжения, возникшие вследствие изменения условий эксплуатации и обслуживания силовой системы. Данные изменения могут быть вызваны нарушением процесса коммутации или поломкой. Временные перенапряжения вызваны коротким замыканием на землю, сбросом нагрузки или феноменом низкочастотного резонанса. Переходные перенапряжения возникают в случаях, когда часто отключаются или подключаются к системе. Также они могут возникнуть при возгорании внешней изоляции. При переключении реактивной нагрузки, переходное напряжение может возрасти до 6-7 p.u. вследствие многочисленных прерываний тока переходного процесса в автоматическом прерывателе с временем нарастания импульса до нескольких долей микросекунд.

Закон Фарадея

См. также: Электромагнитная индукция

ЭДС, создаваемая во вторичной обмотке, может быть вычислена по закону Фарадея, который гласит:

Где

— напряжение на вторичной обмотке,

— число витков во вторичной обмотке,

— суммарный магнитный поток, через один виток обмотки. Если витки обмотки расположены перпендикулярно линиям магнитного поля, то поток будет пропорционален магнитному полю и площади через которую он проходит.

ЭДС, создаваемая в первичной обмотке, соответственно:

Где

— мгновенное значение напряжения на концах первичной обмотки,

— число витков в первичной обмотке.

Поделив уравнение на , получим отношение[8]:


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-03-22; Просмотров: 2304; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.097 с.)
Главная | Случайная страница | Обратная связь