![]() |
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
УСЛОВНЫЕ ВЕРОЯТНОСТИ. НЕЗАВИСИМОСТЬ СОБЫТИЙ
Условная вероятность Р(В / А) = РA(В) - это вероятность осуществления события В при условии, что событие А уже произошло (причем последнее не является невозможным, т.е. Р(А) > 0). Эту вероятность можно вычислить по формуле Для краткости эта величина называется “вероятностью события В при условии А”. Заметим, что для величины Р(В / А) выполняются аксиомы I, II, III, и, следовательно, простейшие свойства (см. §6). Обозначим через Х число очков, выпавших при одном бросании игральной кости. Пусть А = {Х – простое число}, В = {Х – четное число}. Тогда Р(А) = 3/6 = 1/2 (числа 2, 3, 5 - простые, 1, 4, 6 - нет), Р(В) = 3/6 = 1/2, Р(А · В) = 1/6 (простое и четное одновременно число только одно - это 2). Следовательно, Р(В / А) = 1/3, т.е. вероятность того, что выпало четное число очков при условии, что выпало простое число очков, равна 1/3 (среди 3 простых чисел четное - одно); Р(А/В) = 1/3, т.е. вероятность того, что выпало простое число очков при условии, что выпало четное число очков, также равна 1/3 (среди 3 четных чисел простое - одно). События А и В называют независимыми, если Р(А · В) = Р(А) · Р(В). Если одно из событий невозможное ( Æ ), то в обеих частях стоят нули. Если же Р(А) > 0 и Р(В) > 0, то Р(А / В) = Р(А), Р(В / А) = Р(В). Для последнего примера Р(А · В) ¹ Р(А) · Р(В), значит, А и В зависимые. Во многих задачах независимость событий задается по условию задачи (из общих соображений).
§8. ВЕРОЯТНОСТЬ НАСТУПЛЕНИЯ ХОТЯ БЫ ОДНОГО СОБЫТИЯ
Сложные события выражаются через другие наблюдаемые события с помощью алгебраических операций, описанных в §2. Основные формулы для вычисления вероятностей таких событий: Р(
Р(А · В) = Р(А) · Р(В / А) = Р(В) · Р(А / В), если Р(А) > 0, Р(В) > 0 (формула умножения вероятностей); (3)
Р(А + В) = Р(А) + Р(В) - Р(А · В) (формула сложения вероятностей). (4)
Пример 1. Два стрелка независимо друг от друга ведут стрельбу по мишени, причем вероятности попадания при одном выстреле в мишень для них равны p1 = 0, 8, p2 = 0, 6. Каждый произвел по одному выстрелу. Вычислить вероятность события А = {произойдет ровно одно попадание}. Рассмотрим события А1 = {первый стрелок попал в мишень} и А2 = {второй стрелок попал в мишень}. Тогда Вероятность наступления “хотя бы одного события” (т.е. суммы нескольких событий ) вычисляют по формуле
Если же эти события попарно независимы, то
Пример 2. В продукции предприятия 10% бракованных изделий. Какова вероятность, что среди 4 взятых независимо изделий хотя бы одно бракованное? Пусть А - интересующее нас событие, А = A1+ A2+ A3+ A4 , где A1 = {первое изделие бракованное}, A2 = {второе изделие бракованное} и т.д. Так как A1, A2, A3, A4 независимы, то и события Если изделий не 4, а 2, то вероятность того, что из этих двух изделий хотя бы одно бракованное, можно вычислить с помощью формулы (3), т.е. не переходя к противоположному событию: P (A1+A2) = P (A1) + P (A2) - P (A) P (A2) = 0, 1 + 0, 1 - 0, 01 = 0, 19.
§9. ФОРМУЛА ПОЛНОЙ ВЕРОЯТНОСТИ
Пусть H1, H2, ..., Hn - полная группа несовместных событий (определение см. в §2) и пусть событие А может произойти только с одним из событий Нk. Для такого события А выполняется следующая “формула полной вероятности” События Hk принято называть гипотезами по отношению к событию А. Вероятности Р(Hk) трактуются как доопытные (априорные) вероятности гипотез.
Пример 1. Вероятность попадания в мишень при одном выстреле равна 0, 8. Стрелок сделал два выстрела, а затем бросил симметричную монету столько раз, сколько попал в мишень. Какова вероятность, что в результате выпал ровно один “орел”? Здесь в качестве гипотез рассмотрим события Н1 = {произошло два попадания}, H2 = {произошло одно попадание}, H3 = {произошло два промаха}. Их вероятности Р( Н1 ) = 0, 82 = 0, 64, Р( Н2 ) = 2 · (1 - 0, 8) · 0, 8 = 0, 32 (множитель 2 здесь из-за того, что гипотеза содержит два равновероятных события: “попал - промахнулся” и “промахнулся - попал” - это формула Бернулли при р = 0, 8, q = 0, 2, n = 2, k = 1 - см. §11), Р(Н3) = (1 - 0, 8)2 = 0, 04. Сумма вероятностей этих гипотез равна 1, как и должно быть для полной группы. Далее рассмотрим событие А = {выпал ровно один “орел”}. Если произошло событие Н1, то монета бросается дважды. Вероятность того, что при этом выпадет ровно 1 “орел”, равна Р( А/ H1 ) = 0, 5 ( либо “орел - решка” с вероятностью 0, 25, либо “решка - орел” также с вероятностью 0, 25 ). Если произошло событие Н2, то монета бросается один раз и вероятность выпадения при этом одного “орла” равна Р( А/H2 ) = 0, 5. Если же происходит событие Н3, то монету не бросают и Р(А/H3)= 0. Все данные для формулы полной вероятности получены. Следовательно, Р(А) = Р( Н1 )Р( А/H1 ) + P( H2 )P( A/H2 ) + P( H3 )P( A/H3 ) = 0, 48.
Пример 2. В ящике лежат 10 теннисных мячей, в том числе 8 новых и 2 играных. Для игры наудачу выбираются два мяча и после игры возвращаются обратно. Затем для второй игры наудачу извлекаются еще два мяча. Какова вероятность того, что вторая игра будет проводиться новыми мячами? Здесь удобно задать 3 гипотезы: H1 = {для первой игры взяты 2 новых мяча}, H2 = {для первой игры взяты новый и играный мячи}, Н3 = {для первой игры взяты 2 играных мяча}. Их вероятности вычисляются по формуле классической вероятности ( как и в примерах из §4 ):
(Проверка: Р(H1) + Р(H2) + Р(H3) = 1). Событие А = {для второй игры взяты два новых мяча}. В результате осуществления гипотезы H1 в ящике останется 6 новых и 4 играных мяча, поэтому Заметим, что в одной и той же задаче могут быть выбраны разные наборы гипотез, скажем, в примере 2 гипотезу H2 можно представить в виде суммы двух: H2 = {первый взятый для первой игры мяч новый, второй - играный}+{первый взятый для первой игры мяч играный, второй - новый} и т. д. Желательно формулировать гипотезы так, чтобы их вероятности, а также и условные вероятности, вычислялись проще.
§10. ФОРМУЛА БАЙЕСА
В этом параграфе {H1, H2, H3, H4} - по-прежнему, полная группа несовместных событий (гипотез). Если Р(А) > 0, Р(Hk) > 0, то Р(А · Hk) = Р(А) · Р(Hk / А) = Р(Hk) · Р(А / Hk) (см. §§7, 8), откуда -это формула Байеса, в которой Р(А) вычисляют по формуле полной вероятности. Р(Hk / А) - вероятность осуществления гипотезы Hk при условии, что событие А осуществилось. Эту вероятность называют послеопытной или апостериорной. Для ее вычисления рассматривают только те испытания, которые закончились “успехом”, т.е. осуществлением события А. Вероятность Р(Hk / А) выражает “долю” гипотезы Hk для вышеуказанных испытаний.
Пример 1. (см. пример 1 из §8). Два стрелка независимо друг от друга ведут стрельбу по мишени, причем вероятности попадания при одном выстреле в мишень для них равны p1 = 0, 8 и p2 = 0, 6. Каждый сделал по одному выстрелу, причем в результате в мишени оказалась одна пробоина. Найти вероятность того, что промахнулся второй. Зададим гипотезы: Н1 = {оба стрелка либо попали, либо промахнулись}, H2 = {попал только первый}, H3 = {попал только второй}. Подсчитаем их вероятности: P( H1 ) = p1p2 + q1q2 = 0, 56, P( H2 ) = p1q2 = 0, 32, P( H3 ) = q1p2 = 0, 12. Сумма их вероятностей равна 1. Событие А = {в мишени оказалась ровно 1 пробоина} осуществилось, т.е. данная задача на формулу Байеса. Событие {при одной пробоине промахнулся второй}- это гипотеза H2. По формуле Байеса т. к. Р(А/Н1) = 0, Р(А/Н2) = Р(А/Н3) = 1. Значение Р(А), вычисленное по формуле полной вероятности, совпадает с результатом, вычисленным ранее в §8 другим способом. Итак, в среднем среди каждых 11 исходов, заканчивающихся одним попаданием, 8 соответствуют варианту H2 = {первый попал, второй промахнулся}, а остальные три - H3.
Пример 2. (см. пример 2 из §9) В ящике лежат 10 теннисных мячей, в том числе 8 новых и 2 играных. Для игры наудачу выбираются 2 мяча и после игры возвращаются обратно. Затем для второй игры наудачу извлекаются еще 2 мяча, оказавшиеся новыми. Какова вероятность, что первая игра также проводилась новыми мячами? Событие А = {для второй игры взяты два новых мяча}, осуществилось. Поэтому задача решается по формуле Байеса. Нас интересует вероятность Р(H1 / А), где, напомним, гипотеза H1 ={для первой игры взяты 2 новых мяча}. Подставим в формулу Байеса вероятности, подсчитанные в §9.
Популярное:
|
Последнее изменение этой страницы: 2016-03-25; Просмотров: 789; Нарушение авторского права страницы