Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Концепция уровней биологических структур и организация живых систем



Придерживаясь принципов системного подхода, будем рассматривать разнообразие форм и явлений живой природы также с точки зрения уровня определяющих их биологических структур. Хотя подобное изучение и не следует тому историческому пути, каким развивалась биология, но оно даст возможность теоретически представить, как могли возникнуть первые живые системы на Земле и как происходил процесс эволюции от простейших и менее организованных систем к системам более сложным и высокоорганизованным.

Исторически биология развивалась как описательная наука о многообразных формах и видах растительного и животного царства. Поэтому важнейшее место в ней заняли методы описания, анализа, систематизации и классификации огромного эмпирического материала, накопленного натуралистами. Первые классификации, наиболее известной из которых была система растений К. Линнея (1707—1778), а также классификация животных Ж. Бюффона (1707—1788), носили в значительной мере искусственный характер, поскольку не учитывали происхождения и развития живых организмов. Тем не менее они способствовали объединению всего известного биологического знания, его анализу и исследованию причин и факторов происхождения и эволюции живых систем.

Без такого исследования невозможно было бы, во-первых, перейти на новый уровень познания, когда объектами изучения биологов стали живые структуры сначала на клеточном, а затем и на молекулярном уровне.

Во-вторых, обобщение и систематизация знаний об отдельных видах и родах растений и животных требовали перехода от искусственных классификаций к классификациям естественным, где их основой должен стать принцип генезиса, происхождения новых видов, а следовательно, разработка теории эволюции. Такие попытки создания естественной классификации, опирающиеся на весьма несовершен-


ные еще принципы эволюции, предпринимались Ж.Б. Ламарком (1744—1829) и Э.Ж. Сент-Илером (1772-1844). Не подлежит сомнению, что они послужили важной вехой на пути создания Ч. Дарвином (1809—1882) первой научной теории эволюции растений и животных. В-третьих, именно традиционная, описательная или эмпирическая биология послужила тем фундаментом, на основе которого сформировался целостный взгляд на многообразный, но в то же время единый мир живых существ. Дальнейший, теоретический шаг в понимании неизбежно связан с анализом непосредственно данной живой системы, ее расчленением на отдельные подсистемы и элементы, изучением структуры системы, выявлением различных структурных уровней организации живых систем.

13.1. Клеточный уровень исследования живых систем

В середине XIX в. клетка рассматривалась как последняя единица живой материи, наподобие атома неживых тел. Из клеток благодаря соответствующему принципу упорядоченности считались построенными все живые системы различного уровня сложности и организации. Такие идеи высказывал, например, один из создателей клеточной теории М. Шлейден (1804—1881). Другой выдающийся биолог, Э. Геккель (1834—1919), шел дальше и выдвинул гипотезу, согласно которой протоплазма клетки также обладает определенной структурой и состоит из субмикроскопических частей. Таким образом, в живой системе можно было выделить новый структурный уровень организации.

Эти идеи, опережавшие научные знания своей эпохи, встретили сопротивление, с одной стороны, последователей редукционизма, которые стремились свести процессы жизнедеятельности к совокупности определенных химических реакций, а с другой — защитников витализма. Они пытались объяснить специфику живых организмов наличием у них особой «жизненной силы». Пока не существовало развитых методов биологического исследования и сколь-нибудь ясных теоретических концепций, сущность живого сводили к наличию некой таинственной «жизненной силы», которая отличает живое от неживого. Однако такое определение оставалось чисто отрицательным, ибо не раскрывало ни подлинной причины, ни механизмов отличия живого от неживого.

Если первые виталисты ограничивались простой констатацией различия между живым и неживым, то их последователи использовали недостатки и ограниченность физико-химических представлений


о жизни для подкрепления своей позиции. Наиболее интересной в этом отношении представляется попытка немецкого биолога и философа X. Дриша (1867— 1941), который возродил существовавшее еще у Аристотеля понятие энтелехии для объяснения целесообразности живых систем. Основываясь на своих опытах по регенерации морских ежей, которые восстанавливают удаленные у них части тел, Дриш утверждал, что все живые организмы обладают особой способностью к целесообразным действиям по сохранению и поддержанию своей организации и жизнедеятельности, которую он назвал энтелехией. По сути дела, энтелехия ничем не отличается от «жизненной силы» виталистов, хотя в духе своего времени (XX в.) Дриш вводит градации и различные ее степени для разных живых организмов. На упреки, что энтелехию невозможно установить никакими эмпирическими методами, он отвечал, что магнитную силу также нельзя увидеть непосредственно, но физики используют ее для объяснения. На этом примере можно убедиться, как иногда используются понятия о ненаблюдаемых объектах (электромагнитное, гравитационное и другие поля) для защиты ненаучных взглядов.

Несмотря на эти философские дискуссии между редукционистами и виталистами, ученые-экспериментаторы пытались конкретно выяснить, от каких именно структур зависят специфические свойства живых организмов, и поэтому продолжали исследовать их не только на уровне клетки, но также и клеточных структур.

В первую очередь ученые исследовали структуру белков и выяснили, что они построены из 20 аминокислот, которые соединены длинными полипептидными связями, или цепями. Хотя в состав белков человеческого организма входят все 20 аминокислот, совершенно обязательны для него только 9 из них. Остальные, по-видимому, вырабатываются самим организмом.

Характерная особенность аминокислот, содержащихся не только в человеческом организме, но и в других живых системах (животных, растениях и даже вирусах), состоит в том, что все они являются лево-вращающими изомерами, т.е. способными вращать плоскость поляризации света влево, хотя в принципе существуют аминокислоты и правого вращения. Обе формы таких изомеров почти одинаковы между собой и различаются только пространственной конфигурацией. Поэтому каждая из молекул аминокислот является зеркальным отображением другой. Впервые это явление открыл выдающийся французский ученый Л. Пастер, исследуя строение веществ биологического происхождения. Он обнаружил, что такие вещества способны вращать поляризованный луч и поэтому являются оптически актив-


ными, вследствие чего были впоследствии названы оптическими изомерами. В отличие от этого у молекул неорганических веществ эта способность отсутствует, и построены они совершенно симметрично.

На основе своих опытов Пастер высказал мысль, что важнейшим свойством всей живой материи является их молекулярная асимметричность, подобная асимметричности левой и правой рук. Опираясь на эту аналогию, в современной науке данное свойство называют молекулярной хиральностью.

На вопрос, почему именно живая природа выбрала белковые молекулы, построенные из аминокислот левого вращения, до сих пор нет убедительного ответа. Сам Пастер считал, что поскольку живое возникает из неживого, то необходимым предварительным условием для этого процесса должно стать превращение симметричных неорганических молекул в молекулы асимметричные. По его предположению, такое превращение могло быть вызвано асимметричностью космоса или же различными космическими факторами, в частности геомагнитными колебаниями, вращением Земли, электрическими разрядами и т.п. Попытки экспериментально проверить эту гипотезу не увенчались успехом. Поэтому высказывались предположения и о чисто случайном характере возникновения первых живых молекулярных систем, образованных из аминокислот левого вращения. В дальнейшем эта особенность могла быть передана по наследству и закрепиться как неотъемлемое свойство всех живых систем.

13.2. Молекулярно-генетический уровень живых структур

Наряду с изучением структуры белка весьма интенсивно, в особенности в последние полвека, изучались также механизмы наследственности и воспроизводства живых систем. Ведь наряду с процессами метаболизма, или обмена обществ, живые системы характеризуются также воспроизводимостью, т.е. способностью к размножению и оставлению потомства. Особенно остро этот вопрос встал перед биологами при определении границы между живым и неживым. Большие споры возникли в связи с этим вокруг природы вирусов, которые обладают способностью к самовоспроизводству, но не в состоянии осуществлять процессы, которые мы обычно приписываем живым системам: обмениваться веществом, реагировать на внешние раздражители и т.п.

Если считать определяющим свойством живых существ обмен веществ, то вирусы, очевидно, нельзя назвать живыми организмами, но если таким свойством считать способность к воспроизводству, то их еле-


дует отнести к живым системам. Так естественно возникает вопрос, какие свойства или признаки характерны для живых систем? На него на различных исторических этапах развития естествознания ученые отвечали по-разному, в зависимости от достигнутого уровня знаний.

Как изменились наши представления о живых системах в связи с переходом на новый, молекулярный уровень исследования?

Долгое время в связи с изучением синтеза органических веществ основное внимание ученых было сосредоточено на исследовании той части клеточной структуры, которая образована из белков. Многим тогда казалось, что именно белки составляют фундаментальную основу жизни, и поэтому пытались свести свойства живых систем к свойствам и структуре белков. По-видимому, именно опираясь на это, Ф. Энгельс (1820—1895) выдвинул свое известное определение жизни как способа существования белковых тел, которое продолжали некритически повторять в нашей литературе, несмотря на глубокие исследования, выяснившие, что ни сам белок, ни его составные элементы не представляют ничего уникального в химическом отношении.

В связи с этим дальнейшие исследования были направлены на изучение механизмов воспроизводства и наследственности в надежде обнаружить в них то специфическое, что отличает живое от неживого. Было установлено, что наследственное вещество в виде хромосом содержится в ядрах клеток. У человека насчитывается 23 пары хромосом, причем 22 пары являются одинаковыми у мужчин и у женщин, последняя же пара дает возможность определять пол. У женщин эта пара содержит одинаковые хромосомы, названные Х-хромосомами, а у мужчин — разные, т.е. X и Y.

В хромосомах содержится наследственное вещество, о существовании дискретных единиц которого писал в 1865 г. Г. Мендель, а В. Иогансен назвал это вещество геном. Однако и природа, и структура гена оставались нераскрытыми. Наиболее важным открытием на этом пути было выделение из состава ядра клетки богатого фосфором вещества, обладающего свойствами кислоты и названного впоследствии нуклеиновой кислотой. В дальнейшем удалось выявить углеводный компонент этих кислот, в одном из которых оказалась D-дезоксирибоза, а в другом — D-рибоза. Соответственно этому первый тип кислот стали называть дезоксирибонуклеиновыми кислотами, или сокращенно ДНК, а второй — рибонуклеиновыми кислотами, или кратко РНК. Потребовалось, однако, почти сто лет, прежде чем была расшифрована роль нуклеиновых кислот в хранении и передаче наследственности, в синтезе белка и обмене веществ. Не вдаваясь в детали и специальную термино-


логию, кратко рассмотрим эти важнейшие для биологии и естествознания вопросы.

Роль ДНК в хранении и передаче наследственности была выяснена после того, как в 1944 г. американским микробиологам удалось доказать, что вьшеленная из пневмококков свободная ДНК обладает свойством передавать генетическую информацию. До этого существовали либо косвенные, либо не совсем надежные свидетельства этого факта.

24 апреля 1953 г., в день, который стал решающим для развития молекулярной генетики, американским биохимиком Дж. Уотсоном и английским биофизиком Ф. Криком была опубликована статья, раскрывающая структуру материального носителя наследственной информации — молекулы ДНК. Согласно предложенной ими модели, молекула ДНК представляет собой двойную спираль, состоящую из двух ветвей, азотистые основания в которых попарно связаны непрочной водородной связью, так что пуриновое основание — аденин соединяется с пиримидиновым основанием — тимином, а также аналогично гуанин соединяется с цитозином.

Все химические реакции в клетке совершаются в соответствии с программой, закодированной в виде наследственной информации в молекулах ДНК и передаваемой от нее молекулам РНК. В живой клетке в процессе обмена веществ на молекулах ДНК синтезируется информационная РНК, которая переносится в рибосомы и служит матрицей для синтеза белков.

По современным воззрениям, ген представляет собой определенный участок молекулы ДНК вместе со специфическим набором нукле-отидов, в линейной последовательности которых записана генетическая информация. Каждый ген ответствен за синтез определенного белка или фермента. Контролируя процесс их образования, гены управляют всеми химическими реакциями организма и тем самым определяют его признаки.

Передача наследственных свойств организма от одного поколения другому достигается благодаря способности молекулы ДНК самокопироваться и самоудвоению хромосом при клеточном делении. Сам процесс воспроизводства складывается из трех стадий: репликации, транскрипции и трансляции. Совокупность генов организма образуют его генотип.

В 1960-х гг. французскими учеными Ф. Жакобом и Ж. Моно была решена одна из важнейших проблем генной активности, раскрывающая фундаментальную особенность функционирования живой природы на молекулярном уровне. Они доказали, что по своей функцио-


налъной активности все гены разделяются на «регуляторные», кодирующие структуру регуляторного белка, и «структурные гены», кодирующие синтез метаболитов, в том числе ферментов.

Дальнейшими исследованиями была установлена непосредственная зависимость синтеза белков (ферментов) от состояния генов (ДНК). Оказалось, что если воздействовать на генетический аппарат микроорганизмов определенными физическими факторами (ультрафиолетовые, рентгеновские и другие лучи), то они перестают синтезировать необходимые им метаболиты, в частности белки. Благодаря этим исследованиям было доказано, что одна из основных функций генов состоит в кодировании синтеза белков.

В связи с этим возник вопрос, каким образом осуществляется передача информации от ДНК к морфологическим структурам?

Согласно упомянутой выше модели Уотсона и Крика, наследственную информацию в молекуле ДНК несет последовательность четырех оснований: двух пуриновых и двух пиримидиновых. Между тем в белках содержится 20 аминокислот, и поэтому становится необходимым объяснить, как четырехбуквенная запись структуры ДНК может быть переведена в 20-буквенную запись аминокислот белков. Первое гипотетическое объяснение механизма такого перевода дал известный физик-теоретик Г. Гамов, предположив, что для кодирования одной аминокислоты требуется сочетание из трех нуклеотидов ДНК. Спустя семь лет его гипотеза была блестяще подтверждена экспериментально, и тем самым был раскрыт механизм считки генетической информации.

Переход на молекулярный уровень исследования во многом изменил представления о механизме изменчивости. Согласно доминирующей точке зрения, основным источником изменений и последующего отбора являются мутации, возникающие на молекулярно-генетичес-ком уровне. Однако кроме переноса свойств от одного организма к другому существуют и другие механизмы изменчивости, важнейшим из которых являются «генетические рекомбинации».

В одних случаях, называемых «классическими», они не приводят к увеличению генетической информации, что наблюдается главным образом у высших организмов. В других, «неклассических» случаях рекомбинация сопровождается увеличением информации генома клетки. При этом фрагменты хромосомы клетки-донора могут включаться в хромосому клетки-реципиента, а могут оставаться в латентном, скрытом, состоянии, но под влиянием внешних факторов они становятся активными и поэтому могут соединиться с клеткой-реципиентом. Дальнейшее исследование «неклассических» форм генетических рекомбинаций привело к открытию целого ряда переносимых, или


«мигрирующих», генетических элементов. Важнейшими из них являются автономные генетические элементы, названные плазмидами, которые служат активными переносчиками генетической информации. На основе этих результатов некоторыми учеными высказано предположение, что «мигрирующие» генетические элементы вызывают более существенные изменения в геномах клеток, чем мутации.

Все это не могло не поставить вопроса о том, работает ли естественный отбор на молекулярно-генетическом уровне. Появление «теории нейтральных мутаций» еще больше обострило ситуацию, поскольку оно доказывает, что изменения в функциях аппарата, синтезирующего белок, являются результатом нейтральных, случайных мутаций, не оказывающих влияния на эволюцию. Хотя такой вывод и не является общепризнанным, но хорошо известно, что действие естественного отбора проявляется на уровне фенотипа, т.е. живого, целостного организма, а это связано уже с более высоким уровнем исследования.

13.3. Онтогенетический уровень живых систем

Онтогенетическим называют индивидуальный уровень развития и считают, что этот уровень охватывает все отдельные одноклеточные и многоклеточные живые организмы, а раньше чаще всего его рассматривали как включающий только многоклеточные организмы.

Сам термин «онтогенез» ввел в науку известный немецкий биолог Э. Геккель, автор знаменитого биогенетического закона, согласно которому онтогенез в краткой форме повторяет филогенез. Это означает, что отдельный организм в своем индивидуальном развитии в сокращенной форме повторяет историю рода, т.е. филогенеза (от греч. — род).

Поскольку самостоятельной минимальной живой системой можно считать клетку, постольку изучение онтогенетического уровня следует начать именно с клетки. В зависимости от характера структуры и функционирования все клетки можно разделить на два класса:

прокариоты — клетки, лишенные ядер;

эукариоты — клетки, появившиеся позднее и содержащие ядра.

При более глубоком исследовании оказалось, что эти два класса клеток обладают существенными различиями в структуре и функционировании генетического аппарата, строении клеточных стенок и мембранных систем, характере механизмов синтеза белков и т.п.

В соответствии с тем, из каких клеток построены живые системы, их можно разделить на две обширные группы, или два живых царства.


К первому принадлежат многочисленные виды таких одноклеточных организмов, как бактерии, сине-зеленые водоросли, грибы и другие простейшие организмы. Все остальные одноклеточные, а также многоклеточные организмы, начиная от низших и кончая высшими, построены из возникших позднее эукариотных клеток. Эту классификацию пришлось, однако, пересмотреть после открытия архебактерий. Особенность архебактерий состоит в том, что их клетки в чем-то сходны, с одной стороны, с прокариотами, а с другой — с эукариотами. На этом основании в настоящее время различают три типа онтогенетического уровня организации живых систем, представляющих собой три линии развития живого мира: 1) прокариоты, или эубактерии; 2) эукариоты и 3) архебактерии.

По-видимому, все эти три линии развития исходят из единой живой первичной минимальной системы, которую можно называть про-токлеткой. Предполагают, что она обладала всеми основными свойствами, которые являются характерными для живых организмов. К ним относят прежде всего способность обмениваться с окружающей средой — признак, присущий всем открытым системам. С этой способностью непосредственно связана способность протоклетки к метаболизму, т.е. осуществлению биохимических реакций, сопровождающихся усвоением необходимых для роста клетки веществ и удалением использованных продуктов реакций. Дальнейшее функционирование и развитие клетки предполагает также наличие у нее способности к делению и отпочкованию. К этим признакам многие исследователи добавляют дополнительные свойства, но все ученые признают, что протоклетка отнюдь не была какой-то бесструктурной массой, а представляла собой достаточно организованную целостность, которую можно охарактеризовать как живую первичную систему. Предполагают также, что протоклетка по важнейшим своим структурно-функциональным свойствам не была подобна современным одноклеточным прокариотам, а обладала некоторыми признаками, аналогичными свойствам эукариотных клеток.

По вопросу о происхождении эукариотных клеток существуют две основные гипотезы. Сторонники аутогенной гипотезы считают, что такие клетки могли возникнуть путем дифференциации и усложнения слабоструктурированных клеточных образований, подобных прокариотам. Защитники другой, симбиотической гипотезы полагают, что эукариотные клетки образовались путем симбиоза нескольких прокариотных клеток, геномы которых внедрились в клетку-хозяина, причем, по одной версии, они способствовали постепенному превращению последней в эукариотную клетку, а по другой — она уже обладала некоторыми свойствами эукариотов.


Структурный подход к анализу первичных живых систем на онтогенетическом уровне, о котором шла речь выше, нуждается в дополнительном освещении функциональных особенностей их жизнедеятельности и обмена веществ. Среди них особого внимания заслуживает исследование трофических, или пищевых, потребностей организмов. Для этого необходимо проследить взаимоотношения организмов с окружающей средой в рамках соответствующей экологической системы. Именно поэтому изучение структуры и основных типов питания уже давно привлекало внимание ученых. В ходе многочисленных длительных исследований были выделены прежде всего два главных типа питания.

К первому, автотрофному типу относились организмы, которые не нуждались в органической пище и могли жить либо за счет ассимиляции углекислоты (бактерии), либо фотосинтеза (растения). Ко второму, гетеротрофному типу принадлежали все организмы, которые не могли жить без органической пищи.

По вопросу о том, какой тип питания возник в начале становления живых систем, мнения расходятся. Одни ученые не без основания полагают, что сначала появился автотрофный тип, поскольку сложные органические вещества, необходимые для гетеротрофного питания, могли образоваться лишь после того, как автотрофные организмы создали для этого необходимые условия. Другие исследователи считают, что гетеротрофное питание появилось раньше автотрофного. Такого допущения, в частности, придерживается в своей гипотезе происхождения жизни А.И. Опарин, полагая, что уже первичный «бульон», в котором зародилась жизнь, содержал органические соединения как питательную среду для дальнейшего развития.

Простая первоначальная классификация основных типов питания и соответственно организмов на автотрофы и гиперотрофы в дальнейшем подверглась изменениям и уточнениям, в которых выявлялись такие важные факторы, как способность организмов синтезировать необходимые вещества для роста (витамины, гормоны и специфические ферменты), обеспечивать себя энергией, источниками получения углерода, азота и водорода; зависимость от экологической среды и т.п. Таким образом, сложный и дифференцированный характер трофических потребностей организмов свидетельствует о необходимости целостного, системного подхода к изучению живых систем и на онтогенетическом уровне.

Целостность, взаимосвязь и взаимодействие выступают в общей форме функциональной системности, которая находит выражение в согласованном функционировании различных компонентов одноклеточных и многоклеточных организмов.


При этом отдельные компоненты содействуют и способствуют согласованному функционированию других, обеспечивая тем самым единство и целостность в осуществлении всех процессов жизнедеятельности всего организма. Подобная функциональная системность в специфических формах выступает и на других уровнях организации живых организмов. Она является конкретным воплощением системного характера организации живой природы на всех ее уровнях, которая может лишь возрастать и усиливаться в зависимости от места, занимаемого организмом на эволюционной лестнице развития природы.

13.4. Уровни организации живых систем

Онтогенетический уровень организации относится к отдельным живым организмам — одноклеточным и многоклеточным. Его называют также организменным уровнем, поскольку при этом речь идет о структуре и функциях отдельного организма без учета его связей и взаимодействий с другими организмами. Поскольку живой минимальной системой служит клетка, постольку на этом уровне уделяется такое большое внимание анализу структуры и функционирования различных клеточных образований. При переходе к популяциям все внимание сосредоточивается на изучении совокупности или, точнее, системы взаимодействующих отдельных организмов. Если клетки и их структуры изучаются на молекулярном и микробиологическом уровне, то популяции становятся доступными для непосредственного наблюдения.

Популящонный уровень начинается с изучения взаимосвязи и взаимодействия между совокупностями особей одного вида, которые имеют единый генофонд и занимают единую территорию. Такие совокупности, или системы, живых организмов составляют определенную популяцию. Очевидно, что популящонный уровень выходит за рамки отдельного организма, и поэтому его называют надорганизменным уровнем организации.

Приведенное общее определение популяции дает возможность отличать организменный уровень живого от уровня надорганизменно-го. Сам термин «популяция» (от фр. — население) был введен одним из основателей генетики — В. Иогансоном (1857—1927), который с его помощью обозначал генетически неоднородную совокупность организмов в отличие от однородной, называемой им «чистой линией».

В дальнейшем этот термин и обозначаемое им понятие приобрели более глубокий смысл. Многие современные ученые характеризуют популяцию не столько как простую совокупность отдельных организмов, сколько как целостную их систему, в которой они непрерывно


взаимодействуют друг с другом и с окружающей средой. Благодаря этому они оказываются способными к трансформациям, изменению своего ареала и, самое главное, к развитию.

Популяции представляют собой первый надорганизменный уровень организации живых существ. Хотя он тесно связан с онтогенетическим и молекулярным уровнями, но качественно отличается от них по характеру взаимодействия составляющих компонентов, ибо в этом взаимодействии они выступают как целостные общности организмов. По современным представлениям, именно популяции служат элементарными единицами эволюции.

Второй надорганизменный уровень организации живого составляют различные системы популяций, которые называют биоценозами.

Они являются более обширными объединениями живых существ и в значительно большей мере зависят от небиологических, или абиотических, факторов развития.

Третий надорганизменный уровень организации содержит в качестве элементов разные биоценозы и в еще большей степени характеризуется зависимостью от многочисленных земных и абиотических условий своего существования (географических, климатических, гидрологических, атмосферных и т.п.).

Для его обозначения академик В.Н. Сукачев (1880—1967) ввел термин биогеоценоз.

Четвертый надорганизменный уровень организации возникает из объединения самых разнообразных биогеоценозов и называется биосферой.

Таким образом, в функционировании и развитии живой природы особенно наглядно и убедительно выступает ее целостность и системность, которая проявляется в существовании различных иерархических уровней ее организации. При этом каждый новый уровень характеризуется особыми свойствами и закономерностями, несводимыми к закономерностям прежнего, низшего уровня.

Поскольку основу надорганизменных уровней организации живого составляют популяции, целесообразно остановиться на характеристике их несколько подробнее.

Изучением популяций и биоценозов занимается интенсивно развивающаяся в последние годы отрасль биологической науки, называемая популяционной биологией. Одна из основных проблем, которую она призвана решить, заключается в установлении пространственной структуры и объемов популяций. Определить границу между популяциями чрезвычайно трудно, так как в силу подвижности элементов популяции, т.е. составляющих ее организмов, происходит непрерывное перемешивание популяций. Другая трудность заключается в на-


208

линии внутри популяций различных группировок и даже существовании популяций разных рангов.

В рамках популяционной биологии исследуются также весьма важные проблемы метаболического взаимодействия между популяциями и биоценозами, которые относятся прежде всего к изучению их трофических, или пищевых, связей. Именно на этой основе происходит разграничение популяций и биоценозов. Оно состоит в том, что популяции представляют собой незамкнутые, открытые метаболические системы, которые могут существовать и развиваться только при взаимодействии с другими популяциями. В отличие от них биоценозы — относительно замкнутые метаболические системы, в которых обмен и круговорот веществ может осуществляться в рамках входящих в биоценоз популяций. Однако эта замкнутость имеет ограниченный и относительный характер, хотя бы потому, что разные биоценозы также взаимодействуют.

Для характеристики трофического взаимодействия популяций и биоценозов существенное значение имеет общее правило, согласно которому чем длиннее и сложнее пищевые связи между организмами и популяциями, тем более жизнеспособной и устойчивой является живая система любого надорганизменного уровня. Отсюда становится ясным, что с биологической точки зрения на таком уровне решающее значение приобретает трофический характер взаимодействия составляющих живую систему элементов.

Поскольку популяции, как отмечалось выше, являются элементарными единицами эволюции, то необходимо также рассмотреть и эту их характерную особенность, но мы отложим данный вопрос до освещения общих проблем эволюции. В следующей главе перейдем к анализу биосферного уровня организации живого.

 

Основные понятия и вопросы  
Аминокислоты Мембрана
Белок Метаболизм
Биоценоз Молекулярный уровень
Вирус Мутации
Витализм Нуклеиновые кислоты (ДНК, РНК)
Генетическая информация Прокариоты
Геном Редукционизм
Живая структура Хиральность
Классификация Эукариоты
Клетка  

1. В чем состоят характерные особенности описательной биологии?

2. Как пытались объяснить процессы жизнедеятельности сторонники механицизма и редукционизма?

3. В чем заключается ошибочность витализма в биологии?

4. Какую роль играют аминокислоты в живом организме?

5. Чем отличается молекулярная структура живых систем от неживых?

6. Что называют молекулярной хиральностыо, и кто открыл ее?

7. Можно ли отнести вирусы к живым организмам?

8. Какую роль играют молекулы ДНК в передаче наследственности и как был расшифрован генетический код?

9. Какой уровень организации живых систем называется онтогенетическим?

 

10. Чем отличаются прокариоты от эукариотов?

11. Какие гипотезы существуют о происхождении эукариотов?

12. Какие основные способы питания существуют в живой природе?

13. Какой уровень организации называется популяционным и чем он отличается от уровня онтогенетического?

14. В чем состоит разница между биоценозами и биогеоценозами?

15. Какое воздействие сложность трофических связей оказывает на устойчивость и жизнеспособность живых систем?

Литература

Основная:

Кемп П., Армс К. Введение в биологию. М., 1986.

Философия науки. Современные философские проблемы областей научного знания. М., 2005.

Дополнительная:

Глобальный эволюционизм. М., 1994.

Заренков Н.А. Теоретическая биология. М., 1988.

Философия: энциклопедический словарь / Под ред. А.А. Ивина. М., 2004.

14-925


Глава 14


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-03-26; Просмотров: 731; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.069 с.)
Главная | Случайная страница | Обратная связь