Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Классификация автоматических систем и их структураСтр 1 из 6Следующая ⇒
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ МУРМАНСКОЙ ОБЛАСТИ ГАОУ МО СПО «Мончегорский политехнический колледж» КОНТРОЛЬНАЯ РАБОТА по дисциплине: «Основы автоматики» Специальность 140448 " Техническая эксплуатация и обслуживание электрического и электромеханического оборудования (по отраслям)"
Методические указания предназначены для студентов заочной формы обучения по специальности 140448 «Техническая эксплуатация и обслуживание электрического и электромеханического оборудования» (по отраслям). В процессе обучения в МПК обучающиеся заочного отделения изучают курс «Основы автоматики». Автоматические и автоматизированные устройства, станки, линии находят достаточно широкое применение в производственном процессе предприятия. Для предприятия выпускаются серийно и успешно используются автоматизированные устройства. В настоящее время нет ни одного станка, машины, агрегата, используемого на производстве, где бы не применялись средства и не использовались принципы автоматики. Поэтому для успешного решения задач, выдвигаемым производством, современный техник должен наряду с глубокими знаниями технологии должен иметь определенный уровень знаний в области автоматики. Эти знания помогут специалисту рациональнее решать производственные задачи, совершенствовать технологический процесс, используя новейшие достижения науки и техники. Целью дисциплины является получение знаний обучающимися в области автоматизации производственного процесса. Обучающийся должен усвоить основные принципы и методы, используемой при автоматизации производства, изучить назначение, устройство и принцип действия средств автоматики, наиболее перспективных для данной отрасли, выполнять не сложные расчеты, связанные с вопросами автоматизации производства. Освоение курса складывается из самостоятельного изучения учебного материала, объем которого определяется программой, по учебникам, учебным пособиям, техническим журналам и другой специальной литературе, выполнения контрольных работ, выполнения практических работ во время экзаменационной сессии. Основным руководящим материалом при изучении курса является «Рабочая программа», утвержденная цикловой методической комиссией и заместителем директора по учебной работе колледжа. Поскольку основной формой обучения обучающихся заочного отделения является самостоятельная работа, в целях облегчения усвоения курса во время сессий проводятся лекционно-практические занятия объемом до 20 часов. Учебным планом предусмотрено также выполнение обучающимися практических работ (в пределах 8 часов). Самостоятельно должна быть выполнена контрольная работа. ТРЕБОВАНИЯ К ВЫПОЛНЕНИЮ И ОФОРМЛЕНИЮ КОНТРОЛЬНЫХ РАБОТ Методические указания для выполнения контрольных работ по курсу «Основы автоматики» составлены в соответствии с учебными планами подготовки техников заочного отделения. Прежде чем приступить к выполнению контрольной работы, нужно внимательно ознакомиться с данными указаниями. Несоблюдение этих указаний может стать причиной того, что работа не будет даже принята к рецензированию. Нужно помнить, что выполнение контрольных работ является важным элементом в изучении теоретического материала. Все задачи нужно решать самостоятельно, используя проработанный теоретический материал. Задачи и вопросы для контрольных работ по различным разделам курса помещены ниже. Требования, предъявляемые к оформлению контрольной работы: 1. Каждая работа выполняется в отдельной тетради или в электронном формате А4, на обложке которой должны быть написаны: фамилия, имя, отчество студента: домашний адрес, номер учебного шифра, желательно – контактный телефон. 2. На каждой странице должны быть оставлены поля шириной не менее 3 см для замечаний рецензента. 3. Текст, формулы и числовые раскладки должны быть написаны четко и аккуратно, без помарок. 4. Схемы и графики должны быть выполнены с помощью чертежных инструментов. 5. В литературе, изданной до 1985 года, встречаются условные обозначения по старым, не действующим ГОСТ. При выполнении контрольной работы следует пользоваться ЕСКД и ГОСТ, действующими в настоящее время. 6. При описании автоматизации технологического процесса, должно быть полностью объяснено назначение и взаимодействие всех элементов схемы. 7. В конце контрольной работы обязательно указать литературу, поставить дату выполнения работы и подписаться. 8. Если контрольная работа не зачтена, то все необходимые поправки должны быть сделаны в той же тетради после подписи рецензента. Общие указания к решению задач. Решения задач должны быть написаны разборчивым подчерком или отпечатаны на листах формата А4, ответы на поставленные вопросы должны быть четкими, ясными и подтверждены необходимыми схемами, расчетами, графиками, ссылками на используемую литературу с указанием соответствующих страниц. Общие указания к выполнению контрольной работы. В контрольных заданиях содержится 14 вариантов, по 2 вопроса в каждом и задача. Вариант выбирается в зависимости от шифра, присвоенного каждому обучающемуся. Ответ на вопрос должен содержать: 1.Полную формулировку вопроса. 2.Назначение и принцип действия контрольно-измерительного прибора, его схему, описание конструкции и принцип работы, диапазон измеряемых величин, класс точности, область применения. 3.Схемы и чертежи должны быть выполнены аккуратно с соблюдением всех требований. 4.Функциональная схема автоматизации (*) вычерчивается на отдельном листе (формата А4 или А3) в соответствии с требованиями ГОСТ и вклеивается в тетрадь. 5.В конце работы указывается список используемой литературы. Если работа выполнена неудовлетворительно, то обучающийся исправляет ее и предоставляет повторно. Работы, не соответствующие своему варианту, а также выполненные небрежно, не зачитываются и возвращаются студенту без рецензии.
Введение Автоматизация в современном производстве играет огромную роль, т.к. при её использовании решаются следующие задачи: 1. Высвобождается труд человека; 2. Значительно сокращаются затраты энергии и материалов на изготовление продукции; 3. Повышается коэффициент использования основного оборудования; 4. Возрастает производительность труда за счёт увеличения скорости выполнения операций; 5. Улучшается качество выпускаемой продукции за счёт увеличения точности; 6. Обеспечивается выполнение работ и функционирование таких объектов, где непосредственное участие человека невозможно. Это, прежде всего, работа химических и энергетических установок из-за повышенной опасности; управление различными летательными аппаратами, в том числе и в освоении космоса, из-за значительной удалённости; и, наконец, контроль и управление быстро протекающих процессов, которые человек выполнить физически не способен. Кроме этого, автоматизация имеет огромное социальное значение: – изменяются условия и характер труда; – сокращается время выполнения работ за счёт увеличения производительности; – стираются границы физического и умственного труда; – использование ЭВМ – способствует повышению культуры умственного труда. История механизации и автоматизации уходит далеко в прошлое, но наиболее полно проявляется с развитием техники и, особенно с использованием электроэнергии начиная с XVIII века. Конец XVII и начало XVIII веков характеризуется первыми разработками механизмов и приборов с заложенными в них элементами автоматизации: Братьями Бажениными (Архангельск) была сооружена пильная самодействующая мельница. Механик Терентий Иванович Волосков (1729 – 1801) изготовил часы, производившие астрономические вычисления. 1742г. М.В. Ломоносов применил водяной привод насоса для подъёмной лебёдки. Изучая атмосферное электричество, он много работал над созданием метеорологических приборов. В 1759г. он изобрёл самопишущий компас, который представлял собой первый в мире автоматический регистрирующий прибор. 1763г. И.И. Ползунов создал промышленную двухцилиндровую паровую машину – первый двигатель для всеобщего применения на производстве. В 1765г. им был применен первый автоматический регулятор уровня воды в котле паровой машины, идея которого заложена в основу всех современных автоматических регуляторов. 1809г. В институте инженеров путей сообщения разработан проект плавучей землечерпалки мощностью 15 л.с., которая была построена на Ижорском заводе и являлась прообразом первого многоковшового экскаватора. В 1830г. инженером П.П. Мельниковым были разработаны теоретические основы гидромеханизации. Гидравлический метод нашел широкое применение в золотопромышленности. 1832г. Профессор П.Л. Шиллинг, изобретатель первого электромагнитного телеграфа, разработал для него первое релейное устройство для управления сигнальным звонком. В 1839г. академик Б.С. Якоби (изобретатель двигателя постоянного тока) создал первый электрический регистрирующий прибор, используемый в системах автоматического контроля. В 1842г. инженер К.И. Константинов его усовершенствовал, и важным событием было изобретение совместно с Б.С.Якоби импульсного устройства автоматического управления. В 1848г. инженером К.И.Константиновым был создан первый шаговый электродвигатель, являющийся прототипом современного шагового электромагнитного привода. С ростом объёмов железнодорожного строительства в России создаются различные путевые машины. Так, в 1862г. был построен первый специальный вагон с опрокидывающимся кузовом для перевозки балласта, а в 1880г. был применён первый в мире путеукладчик при строительстве Закаспийской железной дороги. В 1887г. инженером И.Н. Ливчаком был сконструирован и создан первый путеизмерительный вагон, а позднее в 1913 году по разработке Н.Е.Долгова построен путеизмерительный вагон усовершенствованной конструкции. 1874г. В.Н. Чиколев изобрёл электромашинный усилитель – основу современной электромашинной автоматики. В 1882г. инженер Н.И. Захаров продемонстрировал прототип современного устройства автоматического копирования – программный регулятор. 1895г. А.С. Попов (изобретатель радио) создал первенец радиотехники – грозоотметчик, в котором использовался им же изобретённый прибор для обнаружения и регистрации электромагнитных колебаний, а в 1898 году сделаны первые шаги в области телеуправления. Талантливый физик Н.Д. Пильчиков продемонстрировал во время своей публичной лекции в Одессе часы, модель семафора и маяка, которые приводились в действие радиосигналами. Нельзя не упомянуть и работы зарубежных учёных в развитии и разработке различных автоматических устройств. Это и английский учёный Дж.К. Максвелл («Трактат об электричестве и магнетизме»), который еще в 1868г. разработал основные принципы автоматического регулирования. Это и изобретение американским ученым А.Г. Беллом в 1876 году телефона. Это и изобретенный еще в 1784 году Уаттом механический центробежный регулятор скорости вращения, применяемый широко и до настоящего времени. Создание теории систем автоматического управления и регулирования относится ещё к 70-м годам XIX века и связано с именами таких русских учёных как И.А. Вышеградский, А.М. Ляпунов, Н.Е. Жуковский, П.Л. Чебышев. С ростом промышленности, транспорта, развитием электрификации и атомной энергетики разработки в области автоматизации находят все более широкое практическое применение, как за рубежом, так и в нашей стране. Последняя же треть ХХ века ознаменована громадными достижениями в области микроэлектроники, освоения космического пространства и создания совершенно новых приборов и технологий, которые успешно используются в настоящее время в строительстве и в путевом хозяйстве. 1. Основные понятия и определения В развитии автоматизации прослеживаются два основных направления: механизация и автоматизация Механизация – это замена мускульной силы человека машинами и механизмами. Автоматизация – применение приборов, приспособлений и машин, позволяющих осуществлять контроль и управление каким-либо процессом без участия человека. В обоих направлениях различают частичную, полную и комплексную механизацию и автоматизацию. Оба эти направления связаны друг с другом, причём автоматизация – является высшей ступенью механизации. Автоматика – это отрасль науки и техники, охватывающая теорию и принципы построения автоматических систем, практического их использования и применения для них необходимых технических средств. Телемеханика (от слова tele – даль, далеко) – это наука, которая изучает и создаёт устройства для контроля и управления на значительных расстояниях, используя различные линии связи как проводные, так и беспроводные, т.е. это – автоматика на расстоянии. При этом телемеханика решает и проблемы, связанные с помехозащищённостью устройств автоматики при больших протяжённостях используемых линий связи. Кибернетика – наука об общих законах получения, хранения, передачи и переработки информации в машинах, живых организмах и их объединениях. Она изучает то общее, что характерно для всех процессов управления, независимо от их физической природы. Кибернетика является теоретической основой автоматизации производства и объединяет три научных направления: 1. Теорию информации; 2. Теорию программирования; Теорию систем управления. Следует заметить, что длительное время кибернетика в нашей стране была вне закона (Толковый словарь 1954г. трактовал это понятие как реакционная лженаука). Ярчайший пример, когда политика вмешивается в науку. А ведь в конце 30-х годов в нашей стране велись значительные разработки в области генетики и кибернетики. Генетика – наука об информации, которая заложена в клетке и передаётся по наследству от растения к растению, от человека к человеку. Теория информации – это раздел кибернетики, в котором математическими методами изучают способы измерения различной информации. Информация – это сведения, передаваемые людьми, и не только, различными методами и способами. Это общее научное понятие, включающее в себя обмен сведениями между людьми, человеком и автоматом, автоматом и автоматом, обмен сигналами в животном и растительном мире, передача признаков от клетки к клетке, от человека к человеку. За единицу информации принимают количество её, содержащееся в случайной величине, принимающей с равной вероятностью два различных значения «да» и «нет», (0 – 1). Такая единица называется двоичной и называется 1 бит. 1 бит = log22, а 8 бит = 1 байт Количество информации на одно сообщение определяется как: I = log2m, где m – число возможных исходов события. Двоичная система связана с появлением такого элемента автоматики как реле, и первые ЭВМ строились именно на них. Параметрические датчики. Параметрические датчики по их устройству и принципу преобразования делятся на: а) контактные; б) реостатные; в) тензочувствительные; г) электролитические; д) термосопротивления; е) емкостные; ж) индуктивные; и) магнитоупругие и магнитострикционные; к) ионизационные. Принцип работы контактных датчиков основан на преобразовании механических перемещений (линейных или угловых) в электрический сигнал путём подключения или отключения источников питания к вторичной цепи (рис. 2.1). Причем входным параметром изображенных датчиков является в одном случае механическая нагрузка, а в другом – температура. Наибольшее применение контактные датчики нашли в качестве конечных выключателей, и они являются типичными представителями релейных элементов, т.к. их выходное сопротивление может принимать только два значения: 0 или ¥. Основным недостатком контактных датчиков является их низкая надежность, т.к. при замыкании или размыкании контактов появляется электрическая дуга (искра), из-за которой сокращается срок службы контактов за счёт их окисления и разрушения, и при этом создаётся высокий уровень электромагнитных помех. Для исключения такого явления применяют различные методы гашения электрической дуги, используя специальные схемы и соответствующие конструкции самих контактов. Рис. 2.2. Реостатные датчики: а – линейный; б – торроидальный В конструкции реостатов используются либо линейные формы каркасов (рис. 2.2, а), для которых входная величина хвх – линейное перемещение, либо – торроидальные (рис. 2.2, б), у которых входная величина хвх – угловое перемещение движка реостата. Обмотки проволочных реостатов выполняются из нихрома или специальных сплавов с высоким внутренним сопротивлением и малым температурным коэффициентом сопротивления. В некоторых случаях вместо обмотки используется графитовое покрытие. Обязательным условием использования этих датчиков является выполнение соотношения Rн> > R, т.е. входное сопротивление элементов, которые подключаются к датчику, должно быть значительно больше сопротивления реостата, в противном случае линейность статической характеристики датчика нарушается (рис. 2.3). Питание реостатных датчиков может осуществляться от источников как постоянного, так и переменного тока. Реостатные датчики нашли довольно широкое применение, несмотря на наличие в их конструкции механического и электрического контакта между движком реостата и его обмоткой, несколько снижающего надежность работы такого датчика. Тензочувствительные датчики – это элементы, основанные на изменении электрического сопротивления проводников и полупроводниковых материалов при наличии в них деформации в пределах упругости. Принцип действия проволочных датчиков понятен из рисунка 2.5, а. В качестве таких датчиков наибольшее применение нашли: – проволочные, чувствительный элемент которых изготовлен из сплавов с высоким удельным электрическим сопротивлением, таких как манганин, нихром, константан; – угольные или графитовые (тензолит, прессугольный порошок) – полупроводниковые (PbS). Для практических целей используют специальную конструкцию проволочных датчиков (рис. 2.5, б), где тонкая манганиновая проволока 3 (Æ 0, 005 мм) укладывается специальным образом на тонкий изоляционный материал 2 (бумага, плёнка), с помощью которого датчик крепится (приклеивается) на исследуемую конструкцию или деталь 1, чтобы деформация детали полностью воспринималась чувствительным элементом датчика. Концы манганиновой проволоки приваривают к медным выводам 4 для дальнейшего подключения датчика к измерительным устройствам. При приложении механической нагрузки происходит деформация чувствительного элемента датчика – проволоки и при этом изменяется её электрическое сопротивление за счет изменения длины и сечения. Статическая характеристика датчика (зависимость относительного изменения сопротивления чувствительного элемента от его относительной деформации в пределах упругости) является линейной (рис. 2.5, в). Чувствительность проволочного датчика, определяемая наклоном статической характеристики, невысока и составляет . Рис. 2.6. Угольный датчик давления: а – устройство; б – статическая характеристика Работа этого датчика основана на том, что при действии механической нагрузки – Р (сжатии) контактное сопротивление между частицами графитовых таблеток 2 и между самими таблетками в столбике уменьшается. Чувствительность подобных датчиков в десятки раз выше, чем у проволочных, а в случае применения полупроводниковых материалов (PbS) – даже в сотни раз. Основным недостатком всех рассмотренных тензодатчиков является наличие температурной погрешности, для компенсации которой применяются специальные методы, рассмотренные во второй части учебного пособия в разделе «Системы автоматического контроля». Тензочувствительные датчики широко применяются для измерения сил, ускорений, деформаций и вызванных ими механических напряжений в строительных конструкциях, а также для других целей, связанных с деформацией (в частности, при исследовании взаимодействия железнодорожного пути и подвижного состава, особенно при больших осевых нагрузках). В электролитических датчиках используется зависимость электропроводности электролитов от его состава (концентрации) и геометрических параметров датчика. Электропроводность простой электролитической ячейки (рис. 2.7) определяется выражением , т.е. зависит от удельной электропроводности раствора c, площади электродов S, находящихся в растворе, и расстояния а между ними, при этом входной величиной такого датчика может быть любой из перечисленных параметров. Для исключения явления электролиза питание электролитических датчиков предпочтительно осуществлять переменным током низкой частоты (f = 50…300 Гц) Электролитические датчики применяются в качестве соленомеров для определения количества солей в водонагревательных установках, в измерителях кислотности (рН-метрах), в устройствах очистки воды для систем водоснабжения, в уровнемерах приемных резервуаров систем водоотведения, для измерения влажности воздуха, а также влажности неоднородных сред (сыпучих строительных материалов). Кроме этого, используя электропроводность воды, они в качестве контактных датчиков применяются для контроля уровня грунтовых вод в строительных котлованах для своевременной откачки из них грунтовых вод. На рис. 2.8 представлено устройство хлористо-литиевого датчика для измерения влажности воздуха, в котором за счёт насыщения влагой соли LiCl(за счет высокой гигроскопичности) меняется её проводимость. Соль наносится на изоляционную пластинку между электродами датчика, а по величине протекающего по ней тока можно определять измеряемый пар аметр – влажность окружающей среды. Работа термосопротивлений основана на зависимости внутреннего сопротивления проводников (металлов) и полупроводниковых материалов от температуры, причем для металлов статическая характеристика датчика (рис. 2.9) в широком диапазоне температур – линейна (рис. 2.9, прямая 1) и описывается выражением , где at – температурный коэффициент изменения сопротивления металла. В качестве материала проводников в термосопротивлениях используют чистые металлы, для которых величина at больше, чем для различных сплавов. Значение температурного коэффициента для таких металлов составляет at = (3, 7…6, 5)× 10-3 (град-1). Так для меди, ассортимент выпускаемых проводников которой наиболее широк, at=4, 3× 10-3 (град-1), т.е. изменение температуры на 10° вызывает изменение сопротивления медной проволоки на 4, 3%. Чувствительность термосопротивлений на основе полупроводниковых материалов значительно выше, чем для металлов, но статическая характеристика их нелинейная (рис. 2.9, кривая 2), поэтому они применяются только в небольшом диапазоне изменения температуры, где нелинейностью характеристики можно пренебречь. Кроме этого, термисторы, как их часто называют, работоспособны только в диапазоне температур от –20 до +120°С, поэтому их практическое применение допустимо лишь в условиях окружающей человека среды. Например, они широко используются в цифровых полупроводниковых медицинских термометрах и во многих приборах, в которых необходимо поддерживать требуемую температуру. Металлические термосопротивления вследствие их конструктивного исполнения (рис. 2.10) имеют достаточно высокую инерционность, что является их существенным недостатком. В качестве датчиков металлические термосопротивления нашли практическое применение в двух режимах их работы. Первый – это режим, при котором температура датчика определяется окружающими условиями и применяется в термометрах и психрометрах (измерителях влажности воздуха). Второй режим – режим нагрева датчика схемным током, при котором его температура определяется условиями теплоотдачи. В этом режиме через чувствительный элемент датчика – проволоку пропускается ток, который нагревает её до температуры t = 150…200°C. При этом отвод выделенного тепла зависит от среды, в которой находится проволока. Подобный режим работы термосопротивлений нашел применение в таких приборах как анемометры (измерители скорости воздушных потоков), вакуумметры и газоанализаторы, но конструктивные особенности исполнения этих датчиков отличаются от рассмотренных выше. Емкостные датчики конструктивно представляют собой электрический конденсатор (рис. 2.11, а). Ёмкость конденсатора определяется тремя параметрами: площадью перекрытия пластин S, расстоянием между ними, а и величиной диэлектрической проницаемости используемого диэлектрика e, находящегося между пластинами. Входной величиной такого датчика может быть любой из перечисленных параметров, а выходной величиной – его реактивное (емкостное) сопротивление , для определения которого необходим источник питания переменного тока высокой частоты. Это объясняется тем, что величина xc при питании датчика от сети (f = 50 Гц) соизмерима с сопротивлением изоляции и составляет при емкости датчика 100…150 пФ более 100 мОм. Поэтому, несмотря на максимальную простоту конструкции и безынерционность датчика, применение его связано с использованием сложной аппаратуры, работающей в области радиочастот (f = 1…10 МГц), а это высокочастотные мостовые схемы и резонансные усилители. Но все же, несмотря на это, емкостные датчики нашли практическое применение во влагомерах (e = var), уровнемерах и в угломерах (S = var) (рис. 2.11, б), а также в емкостных манометрах и микрофонах (a = var). Индуктивные датчики являются другой разновидностью реактивных элементов. Выходной величиной их является индуктивность и индуктивное сопротивление , значение которого определяется измеряемой неэлектрической величиной. Конструктивно индуктивные датчики представляют собой катушку индуктивности с ферромагнитным сердечником (магнитопроводом) и подвижным якорем, являющимся частью этого магнитопровода (рис. 2.12). Величина индуктивности датчика определяется выражением , где w – количество витков катушки, а Rм – магнитное сопротивление магнитопровода (сердечника и воздушного зазора), определяемое согласно выражению . Здесь m – магнитная проницаемость материала сердечника; m0 – магнитная проницаемость воздушного зазора; lc – средняя длина магнитной цепи ферромагнитного сердечника; d – величина воздушного зазора; S – площадь поперечного сечения сердечника. Индуктивность представленного на рисунке датчика будет изменяться за счет перемещения х якоря (S = var). В зависимости от конструкции сердечника это могут быть не только линейные, но и угловые перемещения. Достоинством индуктивных датчиков является простота конструкции, надежность и возможность питания непосредственно от сети переменного тока (f = 50 Гц). Но, в отличие от емкостных датчиков, их существенный недостаток – более высокая погрешность и малая точность из-за нелинейности статической характеристики сердечника (кривой намагничивания). Индуктивные датчики широко применяются в устройствах автоматики для измерения больших и малых перемещений (линейных и угловых), в манометрах, динамометрах, торсиометрах (измерителях моментов), уровнемерах, а также для контроля немагнитных покрытий стальных конструкций. Наиболее чувствительны дифференциальные индуктивные датчики, состоящие из двух одинаковых катушек, соединенных последовательно, и общего подвижного сердечника (рис. 2.13), позволяющие определять не только величину перемещения сердечника, но и его полярность (направление перемещения). Магнитоупругие датчики конструктивно являются тоже индуктивными элементами (рис.2.14), но в них изменение индуктивности обусловлено определённым свойством ферромагнитных материалов при воздействии на них механических усилий. Деформация сердечника из такого материала в результате действия этих усилий приводит к изменению его магнитной проницаемости m, а, следовательно, и величины магнитного сопротивления.
Магнитоупругие датчики по своему применению аналогичны тензочувствительным датчикам, т.е. они также могут использоваться для измерения усилий (рис. 2.14, а), деформаций и вызванных ими механических напряжений (рис. 2.14, б). В качестве материала сердечников в них используется пермаллой, обладающий высоким значением магнитной проницаемости m. В магнитострикционных преобразователях используется обратное свойство ферромагнитных материалов – изменять свои геометрические размеры под воздействием внешних магнитных полей. Практическое применение обе разновидности этих датчиков получили в качестве ультразвуковых акустических излучателей и приемников при контроле механических свойств различных строительных материалов и конструкций. Принцип работы ионизационных датчиков основан на изменении электропроводности газов и жидкостей при воздействии на них облучения (ультрафиолетового, рентгеновского или гамма-излучения). Такие датчики используются для определения параметров этих излучений и конкретным примером применения подобных датчиков могут служить радиометры – приборы для измерения уровня радиации (счетчики Гейгера). Кроме этого, для измерения очень низких значений давления воздуха (до 1 пПа) эти датчики применяются в ионизационных вакуумметрах, в которых интенсивность ионизации газа пропорциональна измеряемому давлению. Генераторные датчики Генераторные датчики, предназначенные для преобразования неэлектрических величин непосредственно в электрическую активную величину, такую как э.д.с., напряжение или ток, делятся на: а) фотоэлектрические; б) термоэлектрические; в) пьезоэлектрические; г) индукционные; д) гальванические; е) датчики Холла. Работа фотоэлектрических датчиков основана на явлении фотоэффекта, который бывает трех видов: внешний, внутренний и вентильный. Фотоэффект – это появление свободных электронов в некоторых материалах при воздействии на них фотонов света. Явление фотоэффекта и его теоретическое обоснование было дано в 1888 году российским ученым, проф. А.Г. Столетовым. Если освободившиеся под воздействием света электроны остаются в веществе, изменяя при этом его электропроводность, то фотоэффект называется внутренним и на нём основана работа всех фоторезисторов. Если такие электроны покидают вещество, то фотоэффект называется внешним. На этом принципе работают вакуумные и газонаполненные фотоэлементы и фотоумножители. Следует заметить, что для работы перечисленных датчиков необходим источник питания. Помимо этого, различают вентильный фотоэффект, которым обладают полупроводниковые материалы. В них электроны из освещенного слоя материала переходят в неосвещенный, отделенный от него тонким запирающим слоем (p-n переходом). В результате между слоями вещества, ввиду недостатка электронов в одном слое и избытка их в другом, возникает разность потенциалов, т.е. появляется э.д.с., под действием которой по внешней цепи, подключенной к такому датчику, будет протекать электрический ток, который принято называть фототоком. Фотоэлементы с внешним фотоэффектом изготавливаются в виде электровакуумных приборов (электронных или ионных) и представляют собой стеклянный баллон с выкачанным изнутри воздухом (вакуумный фотоэлемент) и заполненный инертным газом (газонаполненный фотоэлемент). На внутреннюю поверхность баллона наносится тонкий слой сурьмяно-цезиевого покрытия, выполняющий функции фотокатода, перед которым располагается анод (рис 2.15, а). Под действием электрического поля электроны, вылетевшие с поверхности катода под воздействием фотонов света, устремляются к аноду, обуславливая, таким образом, протекание в цепи с фотоэлементом электрического тока. В газонаполненных приборах величина этого тока возрастает за счет ионизации находящегося в нем газа, т.е. они более чувствительны. Рис. 2.15. Фотоэлектрические датчики: а – вакуумный фотодатчик; б – фоторезистор Все перечисленные фотодатчики характеризуются следующими основными характеристиками и параметрами: Световая характеристика – Iф = f(Ф) представляет зависимость фототока от величины светового потока. У вакуумных фотоэлементов световая характеристика линейная, что позволяет с высокой точностью измерять величины световых потоков. Интегральная чу Популярное:
|
Последнее изменение этой страницы: 2016-04-10; Просмотров: 651; Нарушение авторского права страницы