Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии 


Элементы автоматики для приема информации (датчики)




Датчики являются основными элементами автоматики, предназначенными для приёма информации и преобразующими контролируемый или регулируемый параметр в более удобную для дальнейшего использования величину. В измерительной технике эти элементы часто называют первичными преобразователями. От выбора датчика во многом зависит точность и надёжность работы всей автоматической системы в целом.

Как элементы автоматики, датчики могут классифицироваться по различным показателям, например, по назначению, т.е. по характеру входной измеряемой величины, либо по принципу преобразования. Но лучше всего различать датчики по характеру выходной величины, а по этому показателю они бывают:

– механические;

– гидравлические и пневматические;

– электрические.

Поскольку основным видом энергии, как более дешевой и используемой в современных автоматических системах, является электрическая энергия, остановимся более подробно на электрических датчиках, которые подразделяются на две основные группы: параметрические и генераторные.

У параметрических датчиков под воздействием входной величины изменяются их внутренние параметры, такие как электрическое сопротивление (активное или реактивное). Для работы этих датчиков необходимы и соответствующие источники питания.

Работа генераторных датчиков основана на непосредственном преобразовании входной величины (в большинстве случаев неэлектрической) – в электрическую, и они могут использоваться без источников питания. Выходной величиной таких датчиков является э.д.с. или электрический ток, протекающий под действием этой э.д.с.

Параметрические датчики.

Параметрические датчики по их устройству и принципу преобразования делятся на:

а) контактные;

б) реостатные;

в) тензочувствительные;

г) электролитические;

д) термосопротивления;

е) емкостные;

ж) индуктивные;

и) магнитоупругие и магнитострикционные;

к) ионизационные.

Принцип работы контактных датчиков основан на преобразовании механических перемещений (линейных или угловых) в электрический сигнал путём подключения или отключения источников питания к вторичной цепи (рис. 2.1). Причем входным параметром изображенных датчиков является в одном случае механическая нагрузка, а в другом – температура.

Наибольшее применение контактные датчики нашли в качестве конечных выключателей, и они являются типичными представителями релейных элементов, т.к. их выходное сопротивление может принимать только два значения: 0 или ¥.


Рис. 2.1. Контактные датчики:
1 – пружина, 2 – контактная группа, 3 – биметаллическая пластина

Основным недостатком контактных датчиков является их низкая надежность, т.к. при замыкании или размыкании контактов появляется электрическая дуга (искра), из-за которой сокращается срок службы контактов за счёт их окисления и разрушения, и при этом создаётся высокий уровень электромагнитных помех. Для исключения такого явления применяют различные методы гашения электрической дуги, используя специальные схемы и соответствующие конструкции самих контактов.


Реостатные (потенциометрические) датчики (рис. 2.2), конструктивно выполненные подобно реостатам, преобразуют линейные или угловые перемещения движка реостата в электрическое напряжение путём изменения его выходного сопротивления.

Рис. 2.2. Реостатные датчики: а – линейный; б – торроидальный

В конструкции реостатов используются либо линейные формы каркасов (рис. 2.2, а), для которых входная величина хвх – линейное перемещение, либо – торроидальные (рис. 2.2, б), у которых входная величина хвхугловое перемещение движка реостата. Обмотки проволочных реостатов выполняются из нихрома или специальных сплавов с высоким внутренним сопротивлением и малым температурным коэффициентом сопротивления. В некоторых случаях вместо обмотки используется графитовое покрытие.

Обязательным условием использования этих датчиков является выполнение соотношения Rн>>R, т.е. входное сопротивление элементов, которые подключаются к датчику, должно быть значительно больше сопротивления реостата, в противном случае линейность статической характеристики датчика нарушается (рис. 2.3).




На рис. 2.4 представлена схема дифференциального реостатного датчика, который, кроме этого, реагирует на полярность входного воздействия, т.е. направление перемещения движка реостата (вверх или вниз относительно средней точки обмотки реостата).

Питание реостатных датчиков может осуществляться от источников как постоянного, так и переменного тока. Реостатные датчики нашли довольно широкое применение, несмотря на наличие в их конструкции механического и электрического контакта между движком реостата и его обмоткой, несколько снижающего надежность работы такого датчика.

Тензочувствительные датчики – это элементы, основанные на изменении электрического сопротивления проводников и полупроводниковых материалов при наличии в них деформации в пределах упругости.

Принцип действия проволочных датчиков понятен из рисунка 2.5, а.

В качестве таких датчиков наибольшее применение нашли:

– проволочные, чувствительный элемент которых изготовлен из сплавов с высоким удельным электрическим сопротивлением, таких как манганин, нихром, константан;

– угольные или графитовые (тензолит, прессугольный порошок)

– полупроводниковые (PbS).

Для практических целей используют специальную конструкцию проволочных датчиков (рис. 2.5, б), где тонкая манганиновая проволока 3 (Æ0,005 мм) укладывается специальным образом на тонкий изоляционный материал 2 (бумага, плёнка), с помощью которого датчик крепится (приклеивается) на исследуемую конструкцию или деталь 1, чтобы деформация детали полностью воспринималась чувствительным элементом датчика. Концы манганиновой проволоки приваривают к медным выводам 4 для дальнейшего подключения датчика к измерительным устройствам.

При приложении механической нагрузки происходит деформация чувствительного элемента датчика – проволоки и при этом изменяется её электрическое сопротивление за счет изменения длины и сечения. Статическая характеристика датчика (зависимость относительного изменения сопротивления чувствительного элемента от его относительной деформации в пределах упругости) является линейной (рис. 2.5, в).


Рис. 2.5. Тензометрические датчики: а – принцип действия; б – устройство;
в – зависимость относительного изменения сопротивления чувствительного
элемента от его относительной деформации

Чувствительность проволочного датчика, определяемая наклоном статической характеристики, невысока и составляет .


На рис. 2.6 представлена конструкция угольного столбика (преобразователя давления) и его статическая характеристика.

Рис. 2.6. Угольный датчик давления: а – устройство; б – статическая характеристика

Работа этого датчика основана на том, что при действии механической нагрузки – Р(сжатии) контактное сопротивление между частицами графитовых таблеток 2 и между самими таблетками в столбике уменьшается. Чувствительность подобных датчиков в десятки раз выше, чем у проволочных, а в случае применения полупроводниковых материалов (PbS) – даже в сотни раз.

Основным недостатком всех рассмотренных тензодатчиков является наличие температурной погрешности, для компенсации которой применяются специальные методы, рассмотренные во второй части учебного пособия в разделе «Системы автоматического контроля».

Тензочувствительные датчики широко применяются для измерения сил, ускорений, деформаций и вызванных ими механических напряжений в строительных конструкциях, а также для других целей, связанных с деформацией (в частности, при исследовании взаимодействия железнодорожного пути и подвижного состава, особенно при больших осевых нагрузках).

В электролитических датчиках используется зависимость электропроводности электролитов от его состава (концентрации) и геометрических параметров датчика.

Электропроводность простой электролитической ячейки (рис. 2.7) определяется выражением , т.е. зависит от удельной электропроводности раствора c, площади электродов S, находящихся в растворе, и расстояния а между ними, при этом входной величиной такого датчика может быть любой из перечисленных параметров.

Для исключения явления электролиза питание электролитических датчиков предпочтительно осуществлять переменным током низкой частоты (f = 50…300 Гц)

Электролитические датчики применяются в качестве соленомеров для определения количества солей в водонагревательных установках, в измерителях кислотности (рН-метрах), в устройствах очистки воды для систем водоснабжения, в уровнемерах приемных резервуаров систем водоотведения, для измерения влажности воздуха, а также влажности неоднородных сред (сыпучих строительных материалов). Кроме этого, используя электропроводность воды, они в качестве контактных датчиков применяются для контроля уровня грунтовых вод в строительных котлованах для своевременной откачки из них грунтовых вод.

На рис. 2.8 представлено устройство хлористо-литиевого датчика для измерения влажности воздуха, в котором за счёт насыщения влагой соли LiCl(за счет высокой гигроскопичности) меняется её проводимость. Соль наносится на изоляционную пластинку между электродами датчика, а по величине протекающего по ней тока можно определять измеряемый параметр – влажность окружающей среды.


Рис. 2.8. Хлористо-литиевый датчик

Работа термосопротивлений основана на зависимости внутреннего сопротивления проводников (металлов) и полупроводниковых материалов от температуры, причем для металлов статическая характеристика датчика (рис. 2.9) в широком диапазоне температур – линейна (рис. 2.9, прямая 1) и описывается выражением , где at – температурный коэффициент изменения сопротивления металла.

В качестве материала проводников в термосопротивлениях используют чистые металлы, для которых величина at больше, чем для различных сплавов. Значение температурного коэффициента для таких металлов составляет at = (3,7…6,5)×10-3 (град-1). Так для меди, ассортимент выпускаемых проводников которой наиболее широк, at=4,3×10-3 (град-1), т.е. изменение температуры на 10° вызывает изменение сопротивления медной проволоки на 4,3%.

Чувствительность термосопротивлений на основе полупроводниковых материалов значительно выше, чем для металлов, но статическая характеристика их нелинейная (рис. 2.9, кривая 2), поэтому они применяются только в небольшом диапазоне изменения температуры, где нелинейностью характеристики можно пренебречь. Кроме этого, термисторы, как их часто называют, работоспособны только в диапазоне температур от –20 до +120°С, поэтому их практическое применение допустимо лишь в условиях окружающей человека среды. Например, они широко используются в цифровых полупроводниковых медицинских термометрах и во многих приборах, в которых необходимо поддерживать требуемую температуру.

Металлические термосопротивления вследствие их конструктивного исполнения (рис. 2.10) имеют достаточно высокую инерционность, что является их существенным недостатком.


Рис. 2.10. Металлическое термосопротивление

В качестве датчиков металлические термосопротивления нашли практическое применение в двух режимах их работы. Первый – это режим, при котором температура датчика определяется окружающими условиями и применяется в термометрах и психрометрах (измерителях влажности воздуха).

Второй режим – режим нагрева датчика схемным током, при котором его температура определяется условиями теплоотдачи. В этом режиме через чувствительный элемент датчика – проволоку пропускается ток, который нагревает её до температуры t = 150…200°C. При этом отвод выделенного тепла зависит от среды, в которой находится проволока. Подобный режим работы термосопротивлений нашел применение в таких приборах как анемометры (измерители скорости воздушных потоков), вакуумметры и газоанализаторы, но конструктивные особенности исполнения этих датчиков отличаются от рассмотренных выше.

Емкостные датчики конструктивно представляют собой электрический конденсатор (рис. 2.11, а).


Рис. 2.11. Емкостные датчики: а – устройство; б – принцип действия

Ёмкость конденсатора определяется тремя параметрами: площадью перекрытия пластин S, расстоянием между ними, а и величиной диэлектрической проницаемости используемого диэлектрика e, находящегося между пластинами. Входной величиной такого датчика может быть любой из перечисленных параметров, а выходной величиной – его реактивное (емкостное) сопротивление ,для определения которого необходим источник питания переменного тока высокой частоты.

Это объясняется тем, что величина xc при питании датчика от сети (f = 50 Гц) соизмерима с сопротивлением изоляции и составляет при емкости датчика 100…150 пФ более 100 мОм. Поэтому, несмотря на максимальную простоту конструкции и безынерционность датчика, применение его связано с использованием сложной аппаратуры, работающей в области радиочастот (f = 1…10 МГц), а это высокочастотные мостовые схемы и резонансные усилители. Но все же, несмотря на это, емкостные датчики нашли практическое применение во влагомерах (e = var), уровнемерах и в угломерах (S = var) (рис. 2.11, б), а также в емкостных манометрах и микрофонах (a = var).

Индуктивные датчики являются другой разновидностью реактивных элементов. Выходной величиной их является индуктивность и индуктивное сопротивление ,значение которого определяется измеряемой неэлектрической величиной. Конструктивно индуктивные датчики представляют собой катушку индуктивности с ферромагнитным сердечником (магнитопроводом) и подвижным якорем, являющимся частью этого магнитопровода (рис. 2.12).

Величина индуктивности датчика определяется выражением , где w – количество витков катушки, а Rм – магнитное сопротивление магнитопровода (сердечника и воздушного зазора), определяемое согласно выражению .

Здесь m – магнитная проницаемость материала сердечника; m0 – магнитная проницаемость воздушного зазора; lc – средняя длина магнитной цепи ферромагнитного сердечника; d – величина воздушного зазора; S – площадь поперечного сечения сердечника.

Индуктивность представленного на рисунке датчика будет изменяться за счет перемещения х якоря (S = var). В зависимости от конструкции сердечника это могут быть не только линейные, но и угловые перемещения.

Достоинством индуктивных датчиков является простота конструкции, надежность и возможность питания непосредственно от сети переменного тока (f = 50 Гц). Но, в отличие от емкостных датчиков, их существенный недостаток – более высокая погрешность и малая точность из-за нелинейности статической характеристики сердечника (кривой намагничивания).

Индуктивные датчики широко применяются в устройствах автоматики для измерения больших и малых перемещений (линейных и угловых), в манометрах, динамометрах, торсиометрах (измерителях моментов), уровнемерах, а также для контроля немагнитных покрытий стальных конструкций. Наиболее чувствительны дифференциальные индуктивные датчики, состоящие из двух одинаковых катушек, соединенных последовательно, и общего подвижного сердечника (рис. 2.13), позволяющие определять не только величину перемещения сердечника, но и его полярность (направление перемещения).

Магнитоупругие датчики конструктивно являются тоже индуктивными элементами (рис.2.14), но в них изменение индуктивности обусловлено определённым свойством ферромагнитных материалов при воздействии на них механических усилий. Деформация сердечника из такого материала в результате действия этих усилий приводит к изменению его магнитной проницаемости m, а, следовательно, и величины магнитного сопротивления.

 


Рис. 2.14. Магнитоупругие датчики: а – для измерения усилий;
б – для измерения деформаций и механических напряжений

Магнитоупругие датчики по своему применению аналогичны тензочувствительным датчикам, т.е. они также могут использоваться для измерения усилий (рис. 2.14, а), деформаций и вызванных ими механических напряжений (рис. 2.14, б). В качестве материала сердечников в них используется пермаллой, обладающий высоким значением магнитной проницаемости m.

В магнитострикционных преобразователях используется обратное свойство ферромагнитных материалов – изменять свои геометрические размеры под воздействием внешних магнитных полей. Практическое применение обе разновидности этих датчиков получили в качестве ультразвуковых акустических излучателей и приемников при контроле механических свойств различных строительных материалов и конструкций.

Принцип работы ионизационных датчиков основан на изменении электропроводности газов и жидкостей при воздействии на них облучения (ультрафиолетового, рентгеновского или гамма-излучения). Такие датчики используются для определения параметров этих излучений и конкретным примером применения подобных датчиков могут служить радиометры – приборы для измерения уровня радиации (счетчики Гейгера). Кроме этого, для измерения очень низких значений давления воздуха (до 1 пПа) эти датчики применяются в ионизационных вакуумметрах, в которых интенсивность ионизации газа пропорциональна измеряемому давлению.

Генераторные датчики

Генераторные датчики, предназначенные для преобразования неэлектрических величин непосредственно в электрическую активную величину, такую как э.д.с., напряжение или ток, делятся на:

а) фотоэлектрические;

б) термоэлектрические;

в) пьезоэлектрические;

г) индукционные;

д) гальванические;

е) датчики Холла.

Работа фотоэлектрических датчиков основана на явлении фотоэффекта, который бывает трех видов: внешний, внутренний и вентильный. Фотоэффект – это появление свободных электронов в некоторых материалах при воздействии на них фотонов света. Явление фотоэффекта и его теоретическое обоснование было дано в 1888 году российским ученым, проф. А.Г. Столетовым. Если освободившиеся под воздействием света электроны остаются в веществе, изменяя при этом его электропроводность, то фотоэффект называется внутренним и на нём основана работа всех фоторезисторов. Если такие электроны покидают вещество, то фотоэффект называется внешним. На этом принципе работают вакуумные и газонаполненные фотоэлементы и фотоумножители.

Следует заметить, что для работы перечисленных датчиков необходим источник питания. Помимо этого, различают вентильный фотоэффект, которым обладают полупроводниковые материалы. В них электроны из освещенного слоя материала переходят в неосвещенный, отделенный от него тонким запирающим слоем (p-n переходом). В результате между слоями вещества, ввиду недостатка электронов в одном слое и избытка их в другом, возникает разность потенциалов, т.е. появляется э.д.с., под действием которой по внешней цепи, подключенной к такому датчику, будет протекать электрический ток, который принято называть фототоком.

Фотоэлементы с внешним фотоэффектом изготавливаются в виде электровакуумных приборов (электронных или ионных) и представляют собой стеклянный баллон с выкачанным изнутри воздухом (вакуумный фотоэлемент) и заполненный инертным газом (газонаполненный фотоэлемент). На внутреннюю поверхность баллона наносится тонкий слой сурьмяно-цезиевого покрытия, выполняющий функции фотокатода, перед которым располагается анод (рис 2.15, а). Под действием электрического поля электроны, вылетевшие с поверхности катода под воздействием фотонов света, устремляются к аноду, обуславливая, таким образом, протекание в цепи с фотоэлементом электрического тока. В газонаполненных приборах величина этого тока возрастает за счет ионизации находящегося в нем газа, т.е. они более чувствительны.


Конструкция фоторезисторов аналогична рассмотренным выше хлористо-литиевым электролитическим датчикам, но они значительно меньше размерами и в них в качестве чувствительного элемента используется полупроводниковый материал из германия или кремния (рис. 2.15, б).

Рис. 2.15. Фотоэлектрические датчики: а – вакуумный фотодатчик; б – фоторезистор

Все перечисленные фотодатчики характеризуются следующими основными характеристиками и параметрами:

Световая характеристикаIф = f(Ф) представляет зависимость фототока от величины светового потока. У вакуумных фотоэлементов световая характеристика линейная, что позволяет с высокой точностью измерять величины световых потоков.

Интегральная чувствительность – отношение фототока к потоку лучистой энергии белого цвета (полного спектра) и определяется выражением:

.

Для вакуумных фотоэлементов она постоянна, но для газонаполненных она изменяется и ее необходимо определять при конкретном значении светового потока, т.к. световая характеристика газонаполненных датчиков имеет нелинейный характер за счет ионизации газа.

При номинальном анодном напряжении 240 В интегральная чувствительность вакуумных фотоэлементов составляет 20 мкА/лм, а для газонаполненных, она возрастает до 100…150 мкА/лм. Необходимо отметить, что все фотодатчики, кроме этого, характеризуются и спектральной чувствительностью к оптическому излучению определенной длины волны, т.е. цвету. Одни из них более чувствительны к коротковолновому (ультрафиолетовому) спектру излучения, другие же, наоборот, – к длинноволновому (инфракрасному).

Вольтамперная характеристика Iф = f(Uф) – зависимость фототока от величины приложенного к фотоэлементу напряжения позволяет правильно рассчитывать электрические схемы с подобными датчиками. Принципиальная схема включения этих фотодатчиков на примере вакуумного фотоэлемента представлена на рис. 2.16.

  Рис. 2.16. Схема включения фотодатчика
Интегральная чувствительность фоторезисторов значительно выше, чем у фотоэлементов, но она зависит от величины напряжения источника питания, а световая характеристика полупроводниковых материалов, используемых для изготовления фоторезисторов, в большинстве случаев, нелинейная.

Вентильные фотоэлектрические датчики значительно отличаются от рассмотренных выше фотоэлементов и фоторезисторов. Они являются датчиками-генераторами, световая энергия в которых непосредственно преобразуется в электрическую энергию, и они могут работать без посторонних источников питания.

Конструктивно (рис. 2.17) вентильные фотоэлементы представляют собой металлическую основу 4, на которую нанесен слой полупроводникового материала 3, а сверху полупроводниковый материал закрыт очень тонким полупрозрачным слоем металла (золота) 2 с контактным кольцом 1 для токосъема. Величина фототока вентильных фотодатчиков зависит не только от его освещенности, но и от параметров внешней нагрузки этих датчиков, что необходимо учитывать при правильном их использовании.

Рис. 2.17. Вентильный фотоэлемент
Современные разработки полупроводниковых материалов и технологий в области микроэлектроники позволили настолько уменьшить размеры подобных фотодатчиков, что на площади менее 1 см2 их количество составляет свыше 1 млн.шт. (пикселей).

К вентильным фотодатчикам относятся селеновые фотоэлементы, фотодиоды и фототранзисторы, получившие в настоящее время очень широкое применение, особенно в системах дистанционного управления совместно со светодиодами.

Достоинства фотодатчиков (небольшие размеры, особенно у полупроводниковых, высокая чувствительность, отсутствие механических элементов, малая инерционность) обеспечили им широкое применение для самых различных целей. Фотодатчики используются в приборах, регистрирующих появление или отсутствие светового излучения; в устройствах для измерения освещенности или величины светового потока и в фотореле. В настоящее время они широко применяются для преобразования световой энергии в электрическую в современных цифровых устройствах (компьютерах, видео и фотокамерах). Кроме этого, они входят в состав многих электронных приборов, таких как оптроны и, наконец, они являются основными преобразователями, на которых работают солнечные батареи.

Работа термоэлектрических датчиков основана на том, что в контуре, состоящем из двух различных металлов, возникает э.д.с. постоянного токаe = k(t1-t2), пропорциональная разности температур, в которой находятся точки соединения (спаи) проводников из этих металлов. Под действием этой термо-э.д.с. в контуре будет протекать электрический ток, т.е. в этой термопаре, как принято называть такой датчик, происходит прямое преобразование тепловой энергии в электрическую. Чтобы измерить величину термо-э.д.с., в этот замкнутый контур цепи необходимо включить измерительный прибор – милливольтметр (рис. 2.18). В результате, по величине вырабатываемой э.д.с., пропорциональной разности температур левого (рабочего) спая и его свободных концов, по показанию милливольтметра, можно судить о величине температуры рабочего спая. В измерительной технике такой прибор (термопара и милливольтметр) получил название пирометр. Для увеличения чувствительности подобных измерителей температуры используют последовательное соединение нескольких термопар.

 


Рис. 2.18. Схема включения термопары

Для изготовления термопар используют специальные высокотемпературные сплавы и металлы, позволяющие контролировать более высокие, по сравнению с рассмотренными ранее термосопротивлениями, значения температур (до 2000…2500оС). Именно поэтому термоэлектрические датчики получили очень широкое применение в металлургии.

Включаются термопары либо по схеме непосредственного измерения температуры (пирометры), при котором шкала милливольтметра градуируется предварительной тарировкой, но чаще используется компенсационная измерительная схема, позволяющая значительно повысить точность измерения температуры (см. раздел 3.1. Схемы включения датчиков).

Помимо рассмотренного прямого термо-эффекта имеет место и обратный термоэлектрический эффект, при котором электрическая энергия преобразуется в тепловую – явление Пельтье (по имени Ж. Пельтье, французского физика). Но в этом случае используются специальные полупроводниковые материалы, а применяются такие преобразователи для создания высокоэффективных холодильных установок в медицине, биологии, вакуумной технике и физике.

Явление термоэффекта необходимо учитывать в строительстве при сооружении конструкций из разнородных металлов, т.к. в подобных сооружениях под действием термо-э.д.с., возникающей в местах контакта этих металлов, из-за влияния вредных окружающих условий (влага, кислотность и пр.) возможно их преждевременное старение и разрушение.

Работа пьезоэлектрических датчиков основана на пьезоэлектрическом эффекте. Прямой пьезоэлектрический эффект – это появление электростатических зарядов электричества на поверхности некоторых диэлектриков при их деформации. Этим свойством обладают кристаллы кварца, турмалина и некоторых драгоценных камней, а также специально разработанные для этих целей материалы – сегнетоэлектрики (сегнетовая соль, титанат бария, дигидрофосфат аммония и др.). Например, в кристаллах кварца имеются три ортогональных оси: электрическая, механическая и оптическая, но электрические заряды на поверхности кристаллов появляются лишь при деформациях вдоль первых двух осей, а при сжатии вдоль оптической оси пьезоэффект не наблюдается.

Так как величина возникающего при деформации заряда мала (чувствительность кварца к давлению составляет лишь 2,1•10-11 кулон/кг), то для ее увеличения применяются несколько кристаллов, соединенных параллельно (рис. 2.19) или последовательно с учетом полярности. Малая величина заряда, к тому же, создает опасность его быстрого стекания через подключенную нагрузку, поэтому приходится использовать для его измерения специальные электрометрические усилители с очень высоким входным сопротивлением.

Процесс стекания зарядов ограничивает и область применения пьезоэлектрических датчиков особенно для контроля процессов, медленно изменяющихся во времени. Однако высокая собственная частота подобных датчиков позволяет весьма успешно использовать их для измерения быстро изменяющихся (с частотой в несколько килогерц) давлений, усилий, ускорений, вибраций и деформаций.

Необходимо отметить, что для диэлектриков также имеет место и обратный пьезоэлектрический эффект – деформация диэлектриков при воздействии на них электрического поля, т.е. под действием приложенного напряжения, и это свойство в устройствах автоматики тоже широко используется.

Современные материалы – сегнетоэлектрики имеют более высокую чувствительность и позволяют получать высокие значения выходного напряжения (до нескольких десятков и даже сотен вольт). Поэтому подобные преобразователи используют в качестве источников электрической энергии в некоторых системах зажигания. Пьезоэлектрические датчики часто применяют в весоизмерительных установках для взвешивания транспорта во время его движения. Кроме этого, они широко используются в качестве акустических излучателей и приемников, в частности, для контроля качественных параметров строительных материалов и конструкций и, конечно, в звукотехнике (микрофоны, звукосниматели и даже громкоговорители).

В индукционных датчиках используется явление электромагнитной индукции, т.е. возникновение электродвижущей силы в проводнике при движении его в магнитном поле (е = -Blv)или при изменении величины магнитного поля относительно неподвижного проводника (е = -dФ/dt), согласно закону электромагнитной индукции.

Индукционные датчики являются датчиками-генераторами, в которых входная величина (угловое, линейное перемещение или угловая скорость) непосредственно преобразуется в электродвижущую силу. Например, тахогенераторы – датчики угловой скорости, которые представляют собой генераторы постоянного или переменного тока небольшой мощности, вырабатывающие э.д.с., пропорциональную скорости вращения рабочего органа. Для измерения угловых перемещений широкое применение получили вращающиеся трансформаторы и сельси́ны, которые конструктивно также являются электрическими машинами малой мощности, работающими от сети переменного тока. Так в сельси́нах (рис. 2.20), переменный ток i, проходящий по обмотке возбуждения статора, создает внутри его переменное синусоидальное магнитное поле , и оно, согласно закону электромагнитной индукции, индуцирует в роторных обмотках электродвижущую силу, величина которой зависит от угла поворота ротора сельси́на α относительно его статора.


Рис. 2.20. Схема сельси́на

При использовании системы, состоящей из двух сельси́нов, включенных по трансформаторной схеме, её выходное напряжение пропорционально угловому перемещению ротора одного из сельси́нов в определенных пределах изменения этого угла.

В гальванических датчиках используется явление электрохимической реакции в растворе электролита с находящимися в нем электродами, а это – возникновение электродвижущей силы в результате восстановительной реакции на положительном электроде и окислительной на отрицательном. Конструктивно эти датчики аналогичны рассмотренным выше электролитическим датчикам, но в гальванических используются электроды, изготовленные из разных материалов и в них происходит прямое преобразование химической энергии в электрическую. Величина получаемой при этом э.д.с. зависит как от материала электродов, так и от состава электролита. На этом принципе работают все гальванические источники питания, такие как аккумуляторы и батареи, применяемые в качестве автономных источников электрической энергии и рН-метры – приборы для измерения кислотности различных материалов и растворов.

В технике широко используются полярографические преобразователи, сочетающие в своей работе свойства и гальванических и электролитических датчиков. Такие преобразователи предназначены для целей качественного и количественного анализа растворов и материалов, результаты которого представляются в виде кривой (вольтамперной характеристики). Этот метод был разработан российским ученым Горовским в 1922 году и в его основе лежит зависимость между силой тока и концентрацией вещества в растворе, обусловливающей величину этого тока.

Основное применение метода – это определение примесей различных металлов (меди, свинца, кадмия, цинка, талия и др.) в реактивах, сплавах, рудах, причем при их очень низкой концентрации. Например, в системах водоснабжения такие датчики используются для контроля наличия тяжелых металлов в питьевой воде. Предназначенные для этого приборы – полярографы записывают полярограмму – кривую зависимости силы тока, протекающего через раствор (воду) от приложенного напряжения (рис. 2.21).

Наличие резкого увеличения тока (скачка на вольтамперной характеристике) при определенном значении напряжения указывает на присутствие в растворе конкретного металла, которому соответствует именно эта величина напряжения. Процентное же содержание металла в растворе определяется величиной этого увеличения (скачка тока) при соответствующем напряжении.

Датчик Холла – полупроводниковый преобразователь силы электрического тока в напряжение (э.д.с. Холла), действие которого основано на эффекте Холла. Эффект Холла – это возникновение поперечного электрического поля в проводнике или полупроводниковом материале с током, при помещении его в магнитное поле (рис. 2.22).





Рекомендуемые страницы:


Читайте также:

  1. CПИСОК ТЕМ ДЛЯ РЕФЕРАТОВ, КУРСОВЫХ И ДИПЛОМНЫХ РАБОТ
  2. DOUBLE NEEDS PANG PANG ТУШЬ ДЛЯ РЕСНИЦ от TONY MOLY – 660 руб
  3. E) для факторов - капитал и земля
  4. I. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ
  5. II. Прокомментируйте параллельные переводы и объясните необходимость использования приема конкретизации.
  6. II. Прокомментируйте параллельные переводы и объясните необходимость использования приема опущения.
  7. II. Прокомментируйте параллельные переводы и объясните необходимость использования приема примечаний.
  8. II. ТЕКСТЫ ДЛЯ РАБОТЫ НАД ГОЛОСОМ.
  9. III. Определите значимость для переводчика изучения особенностей литературного направления, к которому относится тот или иной автор.
  10. III. Разделы, изученные ранее и необходимые для данного занятия (базисные знания)
  11. IV. Здания для проживания людей
  12. IV. Сравните параллельные тексты, проанализировав использование приема приближенного перевода.




Последнее изменение этой страницы: 2016-04-10; Просмотров: 1877; Нарушение авторского права страницы


lektsia.com 2007 - 2021 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.055 с.) Главная | Обратная связь