|
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Смеси жидкостей, паров и газов
Общие соотношения Термодинамическая система – объект исследования термодинамики, может представлять собой смесь химически не взаимодействующих между собой чистых веществ. Предполагается также, что структура отдельных компонентов смеси в процессе смесеобразования и стабилизации смеси не изменяется. Из закона сохранения материи следует, что масса смеси G равна сумме масс составляющих ее компонентов Gi
а число киломолей смеси
где Одной из важнейших характеристик смеси является ее состав. Он задается массовыми или молярными концентрациями (долями) компонентов. Массовой концентрацией или массовой долей mi называется отношение массы компонента к массе всей смеси
Молярной концентрацией или молярной долей i-го компонента
Очевидно, что для термодинамических смесей справедливы следующие соотношения:
Средняя (кажущаяся) молярная масса смеси
Зависимость между массовой и молярной концентрациями устанавливается соотношением
или
Газовая постоянная смеси
где Для жидких, твердых и газообразных смесей часто используется и понятие объемной концентрации компонентов. Объемной концентрацией i-го компонента
Схемы смешения При образовании смесей на практике встречаются две основные схемы смешения: при постоянном объеме (V = idem, рис. 18а) и постоянном давлении (p = idem, рис. 18б).
Рис. 18. Схемы смешения при постоянном объеме (а) и при постоянном давлении (б)
При расчете и анализе схемы смешения при постоянном объеме рассматривается система, включающая ряд резервуаров, соединенных трубопроводами с установленными на них кранами (рис. 18а). В каждом резервуаре В процессе смешения по схеме с постоянным объемом теплота извне не подводится (
Смесеобразование при постоянном давлении происходит в трубопроводах (рис. 18б). К общему трубопроводу отдельными потоками подводятся компоненты. Для каждого компонента известны: массовый расход Gi, молярная масса mi , давление pi и температура Ti . Смесеобразование в трубопроводе возможно лишь в случае, когда давление каждого компонента pi больше среднего давления смеси в трубопроводе Заключительные стадии процесса смешения при В процессе смешения при
Смеси идеальных газов Смеси идеальных газов являются также идеальными газами и подчиняются уравнению состояния идеальных газов (уравнению Клапейрона)
где Средняя температура и среднее давление смеси характеризуют конечное состояние диффузионного равновесия смеси. Состояние компонентов смеси в процессе перемешивания непрерывно изменяется, начиная с момента первичного выравнивания давлений компонентов и кончая состоянием диффузионного равновесия, когда давление каждого из компонентов снижается до уровня стабильного парциального давления Закон диффузионного равновесия смеси идеальных газов (закон Дальтона) характеризует установившееся состояние газовой смеси и формулируется следующим образом: каждый компонент смеси ведет себя в газовой смеси так, как будто он один при температуре смеси Уравнения состояния для i-го компонента и всей смеси идеальных газов могут быть представлены в следующем виде:
При делении уравнения (210) на уравнение (211) получаем
Из соотношения (212) следует, что парциальное давление i-го компонента
После преобразования соотношения (213) получаем, что сумма парциальных давлений всех компонентов смеси идеальных газов равна полному давлению смеси
Поскольку внутренняя энергия и энтальпия идеального газа - функции только температуры, исходными соотношениями для определения средней температуры смеси идеальных газов в схеме смешения при
в схеме смешения при
С учетом этих соотношений (215), (216) получаем обобщенное выражение по определению средней температуры смеси идеальных газов
где
Объемная концентрация каждого компонента в смеси
Для идеального газа, исходя из уравнения состояния
vi, пр =
После подстановки vi, пр и V в соотношение (220) получаем
Отсюда следует, что для смесей идеальных газов объемная и молярная концентрации компонентов численно равны.
Смеси реальных газов Для расчетов характеристик смесей реальных газов обычно используется следующее уравнение состояния
Определение значений коэффициента сжимаемости z для реальных газовых смесей проводится с использованием закона соответственных состояний. Однако, в отличие от чистых газов, характеристики соответственных состояний определяются не по фактическим критическим параметрам, а по значениям приведенных критических (псевдокритиеских) давления pпк и температуры Tпк газовых смесей:
где pк, i и Тк, i - критические давление и температура компонентов газовой смеси. Псевдокритические параметры используются для вычисления значений приведенного давлений p и температур t смеси:
Значения критических параметров чистых газов приведены в табл. 2 Таблица 2 Критические характеристики газов
9. Пары и парообразование Процесс парообразования. Основные определения При анализе режимов работы теплосиловых установок практически всегда приходиться иметь дело с разного рода жидкостями и их парами. Процесс парообразования и методика определения основных характеристик процесса парообразования для всех жидкостей практически аналогичны, что дает возможность рассматривать процесс парообразования на примере воды, как одного из наиболее распространенных веществ в природе. Рассмотрим изобарный процесс парообразования 1 кг воды в В исходном состоянии (
Рис. 19. Диаграмма состояний водяного пара в координатах p-v
Процесс кипения протекает на участке а'- а" при постоянном давлении р1 и постоянной температуре ts1. В точке (а" ) вода полностью испаряется. Пар в этом состоянии называется сухим насыщенным. На участке (а'-а" ) вода находится в двух фазах и состоит из смеси кипящей воды и сухого насыщенного пара. Эта двухфазная равновесная система называется влажным насыщенным паром. При дальнейшем изобарном подводе теплоты сухой насыщенный пар превращается в перегретый (а). Перегретый пар имеет температуру выше температуры кипения (насыщения) при данном давлении. В состоянии (а) параметры перегретого пара имеют следующие Аналогичные процессы изобарного подвода теплоты к воде можно провести при других давлениях р2, р3, и т. д. Соответствующие процессы изображаются линиями b0 -b'-b" -b и с0- с'-с" -с. Точки, характеризующие состояния кипящей воды и сухого насыщенного пара при различных давлениях, соединяются плавными линиями. Линия a'-b'-с' показывает зависимость удельного объема кипящей воды от давления насыщения Точки на линии a" -b" -с" характеризуют состояние сухого насыщенного пара, а кривая определяет зависимость удельного объема сухого пара от давления Параметры и функции состояния кипящей воды на нижней пограничной кривой линии насыщения обозначаются одним штрихом, а сухого насыщенного пара - двумя штрихами. Для однозначного определения состояния кипящей воды и сухого насыщенного пара достаточно знание давления р или температуры насыщения ts, по значению которых в термодинамических таблицах водяного пара можно найти свойства кипящей воды - v', u', h', s' и сухого насыщенного пара - v", u", h", s" . В области между пограничными кривыми находится влажный насыщенный пар. Каждой температуре насыщенного пара соответствует определенное давление, то есть между этими параметрами существует однозначная зависимость Для характеристики влажного насыщенного пара, помимо р или ts, в качестве второй независимой переменной используется массовая концентрация сухого насыщенного пара в смеси, называемая степенью сухости или паросодержанием (
где G" – масса сухого насыщенного пара; На нижней пограничной кривой Отношение массы кипящей жидкости к массе смеси (влажного насыщенного пара) называется влагосодержанием
Количество теплоты, которое необходимо подвести при постоянном давлении к 1 кг кипящей жидкости для превращения ее в сухой насыщенный пар, называется скрытой теплотой парообразования и обозначается символом r . Значение скрытой теплоты парообразования (r) можно определить из математического выражения первого начала термодинамики
Так как процесс парообразования протекает при постоянном давлении (
С ростом давления или температуры кипения (насыщения) жидкостей величина скрытой теплоты парообразования Свойства влажного насыщенного и перегретого пара Влажный насыщенный пар является бинарной смесью. Свойства влажного насыщенного пара зависят от давления, при котором он находится, от концентраций жидкой и парообразной фаз в системе, которые определяются значением паросодержания Известно, что объем Для вычисления экстенсивной характеристики системы - влажного насыщенного пара, воспользуемся правилом аддитивности
где Выразим экстенсивные характеристики через соответствующие удельные величины и после их подстановки в уравнение (230) получим
Разделим члены уравнения (231) на массу влажного насыщенного пара
С помощью соотношения (232) можно записать соотношения для определения основных параметров и удельных значений функций состояния влажного насыщенного пара (удельного объема, внутренней энергии, энтальпии и энтропии):
Энтальпия, энтропия и внутренняя энергия перегретого пара определяются из уравнений приращения этих параметров в изобарическом процессе перегрева. В связи с тем, что перегретый пар по своим свойствам близок к идеальному газу, для изобарного процесса перегрева сухого насыщенного пара с некоторой долей приближения справедливы следующие соотношения:
После интегрирования соотношений (237) от температуры насыщения Тs до температуры перегретого пара Т, получаем систему выражений для определения удельных значений функций состояния перегретого пара:
где Область перегретого пара заключена между критической изобарой и верхней пограничной кривой (
Рис. 20. Диаграмма состояния h-s водяного пара
Характеристики перегретых паров различных веществ v, h, s, u, сp и сv приводятся в термодинамических таблицах водяного пара в функции от давления и температуры. При проведении термодинамических расчетов, наряду с аналитическими методами, достаточно часто используются и графические методы расчета, проводимые с использованием энтропийных диаграмм (Т - s и h - s). На этих диаграммах (рис. 20) обычно нанесены линии нижней пограничной кривой (x=0), верхней пограничной кривой (х=1), изобары (p=idem), изохоры (v=idem), изотермы (T=idem) и линии постоянной степени сухости (x=idem). В области влажного насыщенного пара изобары и изотермы совпадают друг с другом, так как Наибольший практический интерес из этих диаграмм имеет диаграмма h - s прежде всего в силу того, что удельная работа ( В энтропийных диаграммах Т - s и h - s обратимые адиабатные (изоэнтропийные) процессы изображаются вертикальными отрезками. Диаграмма Т - s, в основном, пользуется для термодинамического анализа различных циклов. Она позволяет по соответствующим площадям определить количество теплоты, подведенного и отведенного к рабочему телу в рассматриваемом цикле и работу цикла. При расчете процессов, в которых имеет место процесс парообразования, а рабочими телами являются различные вещества, преимущественно используется диаграмма h - s.
Популярное:
|
Последнее изменение этой страницы: 2016-04-10; Просмотров: 2720; Нарушение авторского права страницы