Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Возникновение хромосомных аберраций



Основной предпосылкой для возникновения хромосомных перестроек является появление в клетке двунитевых разрывов ДНК, то есть разрывов обоих нитей спирали ДНК в пределах нескольких п.о. Двунитевые разрывы ДНК возникают в клетке спонтанно или под действием различных мутагенных факторов: физической (ионизирующее излучение), химической или биологической (транспозоны, вирусы) природы. Нарушения и ошибки процесса репарации двунитевых разрывов ДНК приводят к появлению хромосомных перестроек.

Классификация

Делеции

Некоторые типы хромосомных перестроек

Различают терминальные (утрата концевого участка хромосомы) и интеркалярные (утрата участка на внутреннем участке хромосомы) делеции. Если после образования делеции хромосома сохранила центромеру, она аналогично другим хромосомам передается при митозе, участки же без центромеры, как правило, утрачиваются. При конъюгации гомологичных хромосом во время мейоза у нормальной хромосомы на месте, соответствующем интеркалярной делеции у дефектной хромосомы, образуется делеционная петля, которая компенсирует отсутствие делетированного участка.

Врождённые делеции у человека редко захватывает протяженные участки хромосом, обычно такие аберрации приводят к гибели эмбриона на ранних этапах развития. Самым хорошоизученным заболеванием, обусловленным достаточно крупной делецией, является синдром кошачьего крика, описанный в 1963 годуЖеромом Леженом. В его основе лежит делеция участка короткого плеча 5 хромосомы. Для больных характерен ряд отклонений от нормы: нарушение функцийсердечно-сосудистой, пищеварительной систем, недоразвитие гортани (с характерным криком, напоминающим кошачье мяуканье), общее отставание развития, умственная отсталость, лунообразное лицо с широко расставленными глазами. Синдром встречается у 1 новорожденного из 50000.

Современные методы выявления хромосомных нарушений, прежде всего флуоресцентная гибридизация in situ, позволили установить связь между микроделециями хромосом и рядом врождённых синдромов. Микроделециями, в частности, обусловлены давно описанные синдром Прадера-Вилли исиндром Вильямса.

Дупликации

Дупликации представляют собой класс перестроек, который объединяет как внутри-, так и межхромосомные перестройки. Вообще, любая дупликация — это появление дополнительной копии участка хромосомы, которая может располагаться сразу за тем районом, который дуплицирован, тогда это тандемная дупликация, либо в новом месте или в другой хромосоме. Новая копия может образовать отдельную маленькую хромосому со своими собственными теломерами и центромерой, тогда это свободная дупликация[1]: 2. Тандемные дупликации появляются в половых клетках при мейозе в результате неравного кроссинговера (в этом случае второй гомолог несет делецию) или в соматических клетках в результате неаллельной гомологичной рекомбинации при репарации двунитевого разрыва ДНК. В процессе кроссинговера у гетерозиготы при конъюгации хромосомы с тандемной дупликацией и нормальной хромосомы, как и при делеции, формируется компенсационная петля.

Практически у всех организмов в норме наблюдается множественность генов, кодирующих рРНК (рибосомальную РНК). Это явление назвали избыточностью генов. Так у E. coli на рДНК (ДНК, кодирующее рРНК) приходится 0, 4 % всего генома, что соответствует 5-10 копиям рибосомальных генов.

Другой пример дупликации — мутация Bar у Drosophila, обнаруженная в 20-х годах XX века Т. Морганом и А. Стёртевантом. Мутация обусловлена дупликацией локуса 57.0 X-хромосомы. У нормальных самок (B+/B+) глаз имеет 800 фасеток, у гетерозиготных самок (B+/B) глаз имеет 350 фасеток, у гомозиготпо мутации (B/B) — всего 70 фасеток. Обнаружены также самки с трижды повторенным геном — double Bar (BD/B+).

В 1970 году Сусумо Оно в монографии «Эволюция путем дупликации генов» разработал гипотезу об эволюционной роли дупликаций, поставляющих новые гены, не затрагивая при этом функций исходных генов. В пользу этой идеи говорит близость ряда генов по нуклеотидному составу, кодирующих разные продукты. Это трипсин и химотрипсин, гемоглобин и миоглобин и ряд других белков.

Инверсии

Инверсией называют поворот участка хромосомы на 180°. Различают парацентрические (инвертированный фрагмент лежит по одну сторону от центромеры) и перицентрические (инвертированный фрагмент лежит по разные стороны от центромеры) инверсии. При инверсиях не происходит потери генетического материала, поэтому инверсии, как правило, не влияют на фенотип носителя. Однако, если у гетерозигот по инверсиям (то есть у организма, несущего как нормальную хромосому, так и хромосому с инверсией) в процессе гаметогенеза при мейозе происходит кроссинговер в пределах инвертированного участка, то существует вероятность формирования аномальных хромосом, что в свою очередь может привести к частичной элиминации половых клеток, а также формировании гамет с несбалансированным генетическим материалом.

Более 1% человеческой популяции являются носителями перицентрической инверсии в 9 хромосоме, которую считают вариантом нормы[2]

Транслокации

Детекция филадельфийской хромосомы при помощифлуоресцентной гибридизации in situ

Транслокации представляют собой межхромосомную перестройку, при которой происходит перенос участка одной хромосомы на другую. Отдельно выделяютреципрокные транслокации (когда две негомологичные хромосомы обмениваются участками) и Робертсоновские транслокации, или центрические слияния (при этом две негомологичные акроцентрические хромосомы объединяются в одну с утратой материала коротких плеч). Первым центрические слияния описал американец У.Робертсон (W.R.B.Robertson) в 1916 г., сравнивая кариотипы близких видов саранчовых.

Реципрокные транслокации не сопровождаются утратой генетического материала, их также называют сбалансированными транслокациями, они, как правило, не проявляются фенотипически. Однако, у носителей реципрокных транслокаций половина гамет несёт несбалансированный генетический материал, что приводит к снижению фертильности, повышенной вероятности спонтанных выкидышей и рождения детей с врождёнными аномалиями. Частота гетерозигот по реципрокным транслокациям оценивается как 1 на 600 супружеских пар. Реальный риск рождения детей с несбалансированным кариотипом определяется характером реципрокной транслокации (спецификой хромосом, вовлеченных в перестройку, размерами транслоцированных сегментов) и может достигать 40 %.

Примером реципрокной транслокации может служить транслокация типа «филадельфийская хромосома» (Ph) между хромосомами 9 и 22. В 95 % случаев именно эта мутация в гемопоэтических клетках-предшественниках является причиной хронического миелобластного лейкоза. Эту перестройку описали П.Новелл (P.Nowell) и Д.Хангерфорд (D.Hungerford) в 1960 г. и назвали в честь города в США, где оба работали. В результате этой транслокации ген ABL1 из хромосомы 9 объединяется с геном BCR хромосомы 22. Активностьнового химерного белкаприводит к нечувствительности клетки к воздействию факторов роста и вызывает её безудержное деление.

Робертсоновские транслокации являются одним из наиболее распространенных типов врождённых хромосомных аномалий у человека. По некоторым данным, их частота составляет 1: 1000 новорожденных. Их носители фенотипически нормальны, однако у них существует риск самопроизвольных выкидышей и рождения детей с несбалансированным кариотипом, который существенно варьирует в зависимости от хромосом, вовлеченных в слияние, а также от пола носителя. Большинство Робертсоновских транслокаций (74 %) затрагивают хромосомы 13 и 14. В структуре обращаемости на пренатальную диагностику лидерами оказываются носители der(13; 14) и der(14; 21)[3]: 1. Последний случай, а именно, Робертсоновская транслокация с участием хромосомы 21 приводит к так называемому «семейному» (наследуемому) синдрому Дауна.

Робертсоновские транслокации, возможно, являются причиной различий между числом хромосом у близкородственных видов. Показано, что два плеча 2-й хромосомы человека соответствуют 12 и 13 хромосомам шимпанзе. Возможно, 2-я хромосома образовалась в результате робертсоновской транслокации двух хромосом обезьяноподобного предка человека. Таким же образом объясняют тот факт, что различные виды дрозофилы имеют от 3 до 6 хромосом. Робертсоновские транслокации привели к появлению в Европе нескольких видов-двойников (хромосомные расы) у мышей группы видов Mus musculus, которые, как правило, географически изолированы друг от друга. Набор и, как правило, экспрессия генов при робертсоновских транслокациях не изменяются, поэтому виды практически неотличимы внешне. Однако они имеют разные кариотипы, а плодовитость при межвидовых скрещиваниях резко понижена.

Изохромосомы

Изохромосомы состоят из двух копий одного плеча хромосомы, соединенных центромерой таким образом, что плечи образовавшейся хромосомы представляют собой зеркальные «отражения» друг друга. В определенном смысле изохромосома представляет собой гигантскую инвертированную дупликацию размером с целое плечо и делецию другого плеча. Пациенты с 46 хромосомами, из которых одна представляет собой изохромосому, являются моносомиками по генам утраченного хромосомного плеча и трисомиками по генам, присутствующим в изохромосоме. Если изохромосома является добавочной, то данный пациент является тетрасомиком по генам, представленным в изохромосоме. В целом, чем меньше изохромосома, тем меньше генетический дисбаланс, и тем более вероятно выживание плода или ребенка с такой перестройкой. Следовательно, не удивительно, что наиболее частые из описанных случаев аутосомных изохромосом вовлекают хромосомы с маленькими плечами. Некоторые из наиболее частых участников формирования изохромосом — это короткие плечи хромосом 5, 8, 12, 18[4].

Для объяснения возникновения изохромосом можно предположить два механизма: (1) вследствие аномального поперечного разделения центромеры при делении клетки или (2) в результате неправильного слияния концов изохроматидного разрыва, образовавшегося в прицентромерной области

2.51. Мутагенные факторы, классификация, примеры.

Факторы, способные вызывать мутации, называются мутагенными. Их воздействие на живые организмы приводит к появлению мутаций с частотой, превышающей уровень спонтанных мутаций. Различают следующие мутагенные факторы:

* физические (к ним относятся все виды ионизирующих излучений - гамма- и рентгеновские лучи, протоны, нейтроны и др., ультрафиолетовое излучение, высокие и низкие температуры);

* химические (многие алкилирующие соединения, аналоги азотистых оснований нуклеиновых кислот, некоторые биополимеры - чужеродные ДНК или РНК, алкалоиды и многие другие);

* биологические (вирусы, бактерии).

Часто мутагенные факторы называют мутагенами (от мутации и греческого genes - рождающий, рождённый). Мутагены, увеличивающие частоту мутаций в сотни раз (нитропроизводные мочевины) называются супермутагенами.

Процесс образования мутаций с помощью физических или химических мутагенов называется

называется мутагенезом. Последний является одним из важнейших приёмов экспериментальной генетики. Часто термины " мутагенез" и " мутационный процесс" отождествляются, что не оправдано, т.к. мутационный процесс - это многоэтапный процесс возникновения спонтанных или индуцированных мутаций, а мутагенез - это процесс индукции мутаций.

Радиоактивным мутагенезом начали заниматься в 20-х годах нашего столетия. В 1925 г. советские учёные Г.С. Филиппов и Г.А. Надсон впервые в истории генетики применили рентгеновские лучи для получения мутаций у дрожжей. Через год американский исследователь Г. Меилер (впоследствии дважды лауреат Нобелевской премии) применил тот же мутаген к мушке дрозофиле.

Химический мутагенез впервые целенаправленно начал изучать В.В. Сахаров в 1931 г. на дрозофиле при воздействии на её яйца йодом.

2.52. Соматические мутации, примеры

Мутации различного ранга (генные, хромосомные или геномные), возникающие в соматических клетках организма, наследуются потомками этих клеток и делают организм мозаиком, т.е. особью со смешанными популяциями клеток. В разд. 3.6.5.1 и 3.6.5.2 рассмотрены примеры естественного мозаицизма женского организма по активно функционирующим в его клетках Х-хромосомам и связанное с этим явление аллельного исключения, когда в разных клетках организма экспрессируются разные аллели Х-сцепленных генов.

К примеру, у женщины — гетерозиготной носительницы рецессивного аллеля гемофилии — степень нарушения свертывающей системы крови зависит от соотношения соответствующих клеток с генетически инактивированными Х-хромосомами, несущими нормальный или му-тантный аллель.

Нередко у человека встречается мозаицизм по геномным мутациям, связанный с нарушением расхождения хромосом при митозе. Например, в случае синдрома Дауна (трисомия по 21-й хромосоме) мозаицизм встречается с частотой 2 на 48 пациентов, а в популяции их частота равна 1 на 31 000. Чем раньше в ходе развития организма происходит нарушение деления соматических клеток, сопровождающееся нерасхождением дочерних хромосом к полюсам ахроматинового веретена, тем более выраженной будет симптоматика заболевания, вызываемого данной анэуплоидией. Нарушение митоза на более поздних стадиях индивидуального развития приводит к локальному мозаицизму, который может не сопровождаться выраженными отклонениями от нормы. В этом случае наиболее опасным является мозаицизм клеток генеративных тканей, из которых с достаточно большой вероятностью организм может образовывать гаметы с аномальным числом хромосом.

Иногда возникающие соматические мутации являются причиной появления злокачественных новообразований. На рис. 4.2 представлена последовательность событий, приводящих к образованию таких опухолей. Как правило, в основе лежит повреждение ДНК, вызываемое внутренними факторами (нарушением процессов репликации, репарации или рекомбинации) или внешними воздействиями (ионизирующей радиацией, химическими мутагенами или вирусами). Одним из результатов такого повреждения ДНК может оказаться появление клона клеток, обладающего дефектами регуляции клеточного размножения, что приводит к опухолевому росту.

Причиной злокачественного разрастания ткани могут быть также нарушение митоза и неравноценное распределение хромосом между дочерними клетками с возникновением анэуплоидий или хромосомных аберраций. Это вызывает либо гибель клеток, либо приводит к появлению клонов, способных к неконтролируемому росту. В злокачественных образованиях обычно встречаются субклоны, имеющие разные кариотипы, что свидетельствует о множественных аномалиях митоза в клетках опухолей.

Так как в основе злокачественного перерождения тканей может лежать изменение наследственного материала клеток, становится очевидной важная роль мутагенных факторов в процессе возникновения опухолей. Одним из таких мутагенных факторов являются вирусы, которые могут индуцировать в хромосомах то или иное мутационное изменение. Среди опухолей человека вирусное происхождение имеет лимфома Беркитта.

Пониманию молекулярно-биологических механизмов опухолевого роста способствовало открытие так называемых онкогенов, вызывающих злокачественное перерождение клеток и входящих в состав генома ретровирусов. Геном ретровируса состоит из одноцепочечной РНК и содержит ген обратной транскриптазы. При проникновении вируса в клетку-хозяина под контролем фермента обратной транскриптазы образуются множественные копии генетической информации вируса, но уже в виде двухцепочечной ДНК, которые встраиваются в ДНК клетки-хозяина. Функционирование таких ДНК-копий в составе генома клетки приводит к синтезу вирусных РНК и белков, причем вирусный онкоген (v-onc) трансформирует клетку-хозяина в опухолевую.

Использование ДНК-зондов на основе ретровирусных онкогенов обнаружило их гомологию некоторым собственным нуклеотидным последовательностям генома клеток. Эти участки получили название протоонкогенов или клеточных онкогенов (c-onc). Протоонкогены участвуют в контроле клеточного роста, но в обычном состоянии не приводят к опухолевой трансформации. Их мутантные аллели, стимулируя митоз, могут вызвать рост опухолей. Иногда активация клеточного онкогена обусловливается единичной точковой мутацией в нем. В других случаях нет необходимости в такой мутации, так как трансформирующий эффект наблюдается при присоединении онкогена к фрагментам ДНК, обладающим сильными промоторными свойствами. В таких ситуациях следует допустить, что протоонкогенам присущи свойства транспозонов, или «прыгающих генов».

Предполагают, что вирусные онкогены на каком-то этапе эволюции произошли от клеточных онкогенов, интегрированных в геном вируса. Причины, обусловливающие большую трансформирующую активность вирусных онкогенов в сравнении с клеточными, до настоящего времени не вполне ясны.

В опухолевых клетках часто наблюдаются хромосомные аномалии, причем некоторые опухоли отличаются наличием специфических хромосомных дефектов.

Установлено, что онкогены нередко обнаруживаются в непосредственной близости от точек разрывов, происходящих при опухолеспецифичных хромосомных перестройках. Это подтверждает их роль в злокачественной трансформации клеток.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-04-11; Просмотров: 1048; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.027 с.)
Главная | Случайная страница | Обратная связь