Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Обыкновенные и полагающие аннуитеты
Текущую стоимость аннуитета Р определяют как сумму, эквивалентную всей серии платежей, на момент начала аннуитета. Итоговую стоимость S – как сумму, эквивалентную всей серии платежей, на конец аннуитета. Для обыкновенного аннуитета:
, (5.1)
, (5.2)
где B – величина платежа; n – число периодов. Поскольку (5.1) и (5.2) – это суммы возрастающей и убывающей геометрических прогрессий со знаменателем (1 + i), то формулы можно представить в виде:
, (5.3)
. (5.4)
Пример 5.1. Пусть величина платежа B равна 10 тыс. руб., i = 5 %, число периодов n = 12. Найти P и S в случае обыкновенного аннуитета.
руб.
руб.
Стоимости P и S являются эквивалентами суммами, связанными следующими соотношениями:
, . (5.5)
Эти стоимости заменяют всю серию платежей на начало срока и окончание срока соответственно. В примере (5.1) вместо суммы 120 тыс. руб., распределенной на 1 год, одноразовая эквивалентная плата на начало покупки составит 88 632 руб., а на момент окончания выплаты она будет 159 171 руб. Если, кроме периодических платежей В, был осуществлен первоначальный взнос в сумме В0, то получим:
, (5.6)
, (5.7)
поскольку цена денег на момент окончания выплат возрастает по формуле сложных процентов.
Пример 5.2. Работник делает ежеквартальные вклады по 10 тыс. руб. на депозит в банк с нормой процента 5 %, которые начисляются поквартально. Какую сумму он будет иметь через 5 лет?
По формуле (5.2) получим (n = 5 ∙ 4 = 20):
руб.
Если к началу аннуитета на счете работника уже было В0 = 50 тыс. руб., то через 5 лет получим (n = 5 ∙ 4 = 20):
руб.
Иногда считают, что срок аннуитета исчисляется от даты первого платежа (полагающий аннуитет). В этом случае платежи производят в начале периода. Получаем:
, (5.8) отсюда
. (5.9)
Аналогично
. (5.10)
Определение платежей аннуитета и процентной ставки Уравнения (5.6) и (5.7) связывают текущую стоимость Р, итоговую стоимость S, платежи В и процентную ставку i. Разрешая эти уравнения относительно В или n, получают зависимости для определения величины платежей или числа периодов платежей.
; (5.11)
; (5.12)
; (5.13)
. (5.14)
Пример 5.3. Банк начисляет 5 % в год. Какой величины нужно делать ежеквартальные вклады, чтобы накопить через 5 лет 500 тыс. руб.
По формуле (5.12):
; ; руб.
Пример 5.4. Сколько раз нужно делать платежи, чтобы выплатить кредит в сумме 100 тыс. руб., делая ежемесячные взносы по 5000 руб. при ставке кредита 2 % в месяц?
По формуле (5.13):
i = 0, 02; P = 100000; B = 5000;
.
Решение уравнения обычно дает не целые значения для числа периодов n. В этом случае следует округлить результат до меньшего целого и определить величину последнего платежа. В примере 5.4 необходимо найти величину 26-го платежа B26. Используя уравнение эквивалентности для конца 25-го периода, получим:
, (5.15)
откуда . (5.16)
Тогда получим величину последнего платежа для примера 5.4:
руб.
В случае, если возникают задачи по определению необходимой процентной ставки i при известных платежах В и числе периодов n, то для достижения известного результата P или S можно воспользоваться уравнениями (5.6) и (5.7). Однако аналитического решения для i эти уравнения не имеют и могут быть решены лишь численно.
Пример 5.5. Какова должна быть процентная ставка для того, чтобы кредит в размере 100 тыс. руб. был оплачен за 20 платежей, каждый в размере 10000 руб.?
, или i = 7, 75 %.
Инвестиции Инвестиция – расходование ресурсов в расчете на получение доходов в будущем по истечении достаточно длительного периода времени. Любая инвестиция подвержена риску в том смысле, что надежда на получение дохода может и не оправдаться. Различают 2 вида инвестиций: финансовые и реальные. Первые представляют собой вложения капитала в долгосрочные финансовые активы (акции, облигации); вторые – в развитие материально-технической базы предприятий производственной и непроизводственной сферы. В России реальные инвестиции называют капитальными вложениями [7, с. 28–37].
Чистый приведенный доход (ЧПД) ЧПД – текущая стоимость денежных потоков за вычетом текущей стоимости денежных оттоков. Расчет данной величины предусматривает дисконтирование денежных потоков, т. е. все доходы и затраты приводятся к одному моменту времени. ЧПД – это обобщенный конечный результат инвестиционной деятельности в абсолютном измерении. При разовой инвестиции ЧПД рассчитывается таким образом:
, (6.1)
где Rk – годовой доход в k-м году; n – число лет, в течение которых поступают доходы; i – процент дисконтирования; I – величина начальных инвестиций. Выбор ставки дисконтирования – важный момент. Она должна отражать ожидаемый усредненный уровень ссудного процента на финансовом рынке. Для определения эффективности инвестиционного проекта отдельной фирмы в качестве ставки дисконтирования используют средневзвешенную цену капитала, используемого фирмой для финансирования данного инвестиционного проекта. Если проект предполагает не разовую инвестицию, а последовательные инвестирования финансовых ресурсов течение m лет, то формула будет такой:
, (6.2)
где Ij – инвестиции в j-м году. ЧПД оценивает, на сколько приведенный доход перекрывает приведенные затраты. Если D ≤ 0, то проект не имеет прибыли. Одно из важных свойств ЧПД состоит в том, что ЧПД разных проектов можно суммировать, поскольку данный показатель аддитивен во времени. Это позволяет использовать его при анализе оптимальности инвестиционного портфеля.
Пример 6.1. Предприятие осуществляет инвестиционный проект на 5 лет при ежегодной инфляции 10 %. Затраты и доходы по годам прогнозируются в следующем виде:
Найти ЧПД.
руб.
Если просто суммировать доходы и инвестиции без учета дисконтирования то, расходы составят 210 тыс. руб., а доходы – 300 тыс. руб., прибыль – 90 тыс. руб.
Срок окупаемости Срок окупаемости – минимальное целое число лет, необходимых для возмещения стартовых инвестиций. Найти его можно из формулы:
. (6.3)
Для данных из примера 6.1 срок окупаемости Nок найдем следующим образом: ; ; .
Таким образом, Nок = 4 года. При необходимости более точного определения срока окупаемости можно воспользоваться линейной интерполяцией:
, (6.4)
где – первый положительный ЧПД; – доход в предшествующем году. Для примера 6.1 получим
года.
Если доходы можно представить в виде аннуитета, то . (6.5)
Так как логарифма отрицательного числа не существует, то необходимо выполнение условия:
. (6.6)
Пример 6.2. Вложения I = 10 000 руб. принесут ежегодный доход R = 1000 руб. при инфляции 5 %. Найти срок окупаемости этих вложений.
лет.
Без учета инфляции срок окупаемости составил бы лет.
Функция риска Если ожидаемый ЧПД удовлетворяет условию
, (6.7)
где – минимальная допустимая величина дохода, то проект может быть принят. Поскольку при расчете ЧПД всегда сталкиваются с неопределенностью, например, при нахождении ставки дисконтирования i и величины ожидаемого дохода R, то для оценки возможности того, что действительный доход окажется ниже критического , вводят функцию риска Fr. Если известны вероятностные характеристики D, то функцию риска Fr можно определить как вероятность того, что доход D окажется меньше :
, (6.8)
где F(D) – функция распределения вероятностей случайной величины D. Эта функция является интегралом от функции плотности f(x) распределения вероятностей случайной величины:
. (6.9)
Для равномерно распределенной случайной величины на интервале , где – максимально возможный доход. Эта функция указывает на равную вероятность получения любого дохода из этого интервала. В данном случае функции риска будет:
, (6.10)
и риск возрастает линейно от 0 (при ожидании минимально возможного дохода) до 1 (при ожидании максимально возможного дохода). Часто в реальных расчетах используют нормальное распределение с плотностью
. (6.11)
В этом случае вероятность того, что случайная величина X не превзойдет уровня , определяют по интегралу Лапласа:
. (6.12)
Этот интеграл вычисляется численно. Можно определить величину , необходимую для достижения заданного риска, решив уравнение
, (6.13)
где R – величина допустимого риска. Например, для m = 2 и R = 0, 1 получим = 0, 78 – величина среднеквадратического отклонения, обеспечивающая 10-процентный риск.
Популярное: |
Последнее изменение этой страницы: 2016-04-11; Просмотров: 1115; Нарушение авторского права страницы