Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Влияние дисперсного состава и формы частиц на оптические свойства пигментированных лакокрасочных материалов
Укрывистость, красящая способность цветных и разбеливающая способность белых пигментов, а также такие колористические показатели, как доминирующая длина волны (цветовой тон) и чистота цвета пигментов при неизменном химическом составе и кристаллической модификации зависит, прежде всего, от их дисперсности. Достаточно точное прогнозирование цвета на практике имеет ряд сложностей, связанных с тем, что спектр диффузного отражения в отличие от спектра пропускания зависит не только от положения и формы полосы поглощения, но и дисперсности пигментов, которая в значительной степени определяет характер рассеяния света. [3, 28, 29]. Как следует из теории Релея и теории Ми, рассеяние света зависит от размера частиц. Согласно теории Ми, зависимость светорассеяния от размеров частиц выражается кривой с максимумом. Размер сферических частиц пигментов и наполнителей характеризуются диаметром, кубические (гранулированные пигменты)- длиной ребра куба, зернистые и игольчатые характеризуются наибольшим и наименьшим размерами, пластинчатые или чешуйчатые эквивалентным размером или диагональю. Оптимальный с точки зрения укрывистости размер частиц белых пигментов (в нм) определяется уравнением Вебера:
;
λ – длина волны, нм; n1 и n0 – коэффициенты преломления пигмента и связующего.
Из этого уравнения следует, что размер частиц пигментов, соответствующий максимальному рассеянию света в пигментированном покрытии и, соответственно, максимальной укрывистости, определяется соотношением показателей преломления связующего и пигмента [3]. Зависимость оптической эффективности хроматических пигментов от размера частиц можно представить следующим образом (рисунок 12) [28, 29].
Рисунок 12 – Зависимость функции ГКМ хроматических пигментов от размера частиц как суперпозиция двух функций
С одной стороны, с ростом размера частиц экспоненциально уменьшается поглощение в максимуме абсорбции света и, соответственно, уменьшается значение функции ГКМ (F), начиная с F0. Эта зависимость описывается уравнением [29]
F = F0exp(-kD).
C другой стороны, имеет место экстремальное изменение зеркального отражения света от поверхности частиц в области «аномального» коэффициента преломления поглощающих свет частиц. Возникающее при этом диффузное отражение света, имеющего цвет дополнительный к поглощенному, повышает эффективную чистоту цвета. Эта зависимость подчиняется уравнению [29].
F1 = FDexp(-fD);
где F1 можно считать виртуальным коэффициентом поглощения.
Таким образом, зависимость оптической эффективности хроматических пигментов от дисперсности может быть выражена уравнением:
F = F0 exp(-kD) + FDexp(-jD);
где F0 – предельное значение функции ГКМ (для D ®0); к, Ф и j - коэффициенты, имеющие размерность L-1.
В результате анализа этого уравнения и, учитывая нецелесообразность повышения степени дисперсности выше значений, при которых скорость повышения интенсивности резко замедляется, получено [29] следующее уравнение для вычисления оптимального размера частиц:
;
Пренебрегая малыми величинами в высоких степенях, получаем, что положение максимума на кривой, описываемой зависимостью оптической эффективности хроматических пигментов от дисперсности, соответствует размеру частиц:
;
Следует отметить, что максимума на зависимости оптической эффективности хроматических пигментов от дисперсности в области положительных значений может и не быть. Практически, это имеет место для многих пигментов. Максимуму функции F1 соответствует D = 1/j. Этот размер, как отмечалось выше, подчиняется правилу Вебера. Таким образом, при условии, что l – длина волны света, имеющего цвет, дополнительный к поглощенному, n1 и n0 - показатели преломления пигмента и среды для данной длины волны, соответственно, можно записать:
;
Анализируя полученное уравнение видно, что оптимальный размер частиц хроматических пигментов равен двум третям размера частиц, соответствующих максимальному рассеянию света, за вычетом некоторой величины F0k2/Фj2. Практически, для всех пигментов коэффициент j примерно в два раза больше к, откуда следует, что с достаточной степенью точности можно считать, что
;
Таким образом, чем выше коэффициент преломления пигмента на участке спектра, где пигмент имеет минимум поглощения света, и выше коэффициент поглощения на участке максимума поглощения, тем меньше оптимальный размер частиц хроматического пигмента. Для большинства пигментов второй член уравнения уменьшает Dопт не более чем на 30%, а чаще всего на значительно меньшую величину, определяющуюся соотношением F0 и Ф. Поэтому для ориентировочных расчетов можно пользоваться упрощенной формулой:
;
Если известны показатели преломления среды и пигмента для участка спектра, соответствующего большему отражению или рассеянию, то, используя минимум экспериментальных данных, зависимость оптической эффективности от размера частиц приближенно может быть выражена уравнением [28, 29]:
F » F0exp + ФDexp ;
Для максимума разбеливающей способности характерна узкая фракция размеров частиц, отвечающая оптимальному радиусу частицу rопт. Если rн< rопт, то пигмент имеет голубоватый оттенок, при rн> rопт – желтоватый [3]. К пигментам, создающим оптические эффекты за счет явления интерференции, относятся перламутровые пигменты, представляющие собой пластинки слюды с низким показателем преломления, на которые нанесены оксиды металлов (в основном TiO2) различной толщины. В зависимости от толщины нанесенных слоев (от 40 до 150 нм) создается цвет пигмента. Доминирующая длина волны светового потока, отраженного под углом α связана с показателем преломления оболочки и ее толщиной уравнением
;
где z – порядок интерференции; - угол падения; d – толщина слоя, мкм; n - показатель преломления оболочки.
На цвет пигментов влияет и форма частиц [3]. Изменение распределения частиц пигментов и наполнителей при формировании покрытий из наполненных композиционных материалов, происходящее вследствие флокуляции и коагуляции частиц также оказывает влияние на колористические характеристики покрытий [2, 30-32]. Механизм зрения
В соответствии с современными представлениями восприятие того или иного цвета человеком происходит за счет воздействия лучистой энергии на три типа фоторецепторов, чувствительных к красному, зеленому и синему свету, имеющихся в сетчатке глаза. Мозг воспринимает суммарный сигнал от рецепторов каждого типа как определенный цвет. Наибольшее световое ощущение вызывает монохроматическое излучение с длиной волны 555 нм. Непосредственно светочувствительными элементами являются зрительные рецепторы - палочки и колбочки. В сетчатке глаза имеется примерно 120 млн. палочек и 7 млн. колбочек. В функциональном отношении палочки отвечают за скотопическое (ночное) зрение, т.е. за зрение при низких уровнях освещенности (менее 0, 1 люкс). При высоких уровнях освещенности (свыше 500 люкс) палочки не работают, и цветовое зрение полностью обеспечивается колбочками. Это зрение называют фототропическим или дневным. Между этими двумя уровнями освещенности зрение обеспечивается и палочками и колбочками, такое зрение называют мезопическим или сумеречным зрением. На рисунке 13 представлена кривые чувствительности человеческого глаза. Пики чувствительности колбочек лежат в синей (420 нм), зеленой (530 нм) и желто-зеленой (560 нм) областях спектра, в то время как длина волны пика чувствительности палочек расположена в 496 нм. Если построить спектры поглощения в зависимости от волнового числа (величины, обратной длине волны), то они будут иметь одинаковую форму и ширину полос.
Рисунок 13 – Кривые чувствительности фоторецепторов человеческого глаза Любое изменение в спектре поглощения зрительных пигментов будет приводить к изменению дневной спектральной чувствительности зрительной системы. При отсутствии колбочек, чувствительных к длинноволновому излучению (протанопии), глаз воспринимает только средний и коротковолновый участок видимого спектра. Длина волны максимума чувствительности у протанопов сдвигается в сторону коротких длин волн. На рисунке 14 представлен спектр поглощения колбочек аномальных дейтеронопов и протанопов по сравнению со спектром поглощения колбочек у лиц с нормальным цветовым зрением.
Рисунок 14 - Смещения чувствительности глаза от чувствительности среднего наблюдателя
С другой стороны, кривая спектральной чувствительности для дейтеранопов складывается из спектров поглощения коротко- и длинноволновых колбочек. Менее 0, 01% всех людей страдают полной цветовой слепотой (монохроматы). Монохроматы различают только градации серого. Нарушения цветового зрения гораздо чаще встречаются у мужчин, чем у женщин. Частота протаномалии у мужчин составляет примерно 0, 9%, протанопии - 1, 1%, дейтераномалии 3-4% и дейтеранопии - 1, 5%. Тританомалия и тританопия встречаются крайне редко. У женщин дейтераномалия встречается с частотой 0, 3%, а протаномалии - 0, 5% [4]. Популярное:
|
Последнее изменение этой страницы: 2016-04-11; Просмотров: 1175; Нарушение авторского права страницы