Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Спектральная плотность сигналов



Пусть сигнал s(t) задан в виде непериодической функции, причем он существует только на интервале (t1, t2) (пример - одиночный импульс). Выберем произвольный отрезок времени T, включающий в себя интервал (t1, t2) (см. рис.1).

Обозначим периодический сигнал, полученный из s(t), в виде (t). Тогда для него можно записать ряд Фурье

Для того, чтобы перейти к функции s(t) следует в выражении (t) устремить период к бесконечности. При этом число гармонических составляющих с частотами w =n2p /T будет бесконечно велико, расстояние между ними будет стремиться к нулю ( к бесконечно малой величине:

амплитуды составляющих также будут бесконечно малы. Поэтому говорить о спектре такого сигнала уже нельзя, т.к.спектр становится сплошным.

имеем:

Внутренний интеграл является функцией частоты. Его называют спектральной плотностью сигнала, или частотной характеристикой сигнала и обозначают т.е.

Пределы интегрирования можно для общности поставить бесконечными, так как все равно там, где s(t) равна нулю, и интеграл равен нулю.

Выражение для спектральной плотности называют прямым преобразованием Фурье. Обратное преобразование Фурье определяет временную функцию сигнала по его спектральной плотности

рямое (*) и обратное (**) преобразования Фурье вместе называют парой преобразований Фурье. Модуль спектральной плотности

определяет амплитудно-частотную характеристику (АЧХ) сигнала, а ее аргумент называют фазо-частотной характеристикой (ФЧХ) сигнала. АЧХ сигнала является четной функцией, а ФЧХ - нечетной.

Смысл модуля S(w ) определяется как амплитуда сигнала (тока или напряжения), приходящаяся на 1 Гц в бесконечно узкой полосе частот, которая включает в себя рассматриваемую частоту w . Его размерность - [сигнал/частота].

Энергетический спектр сигнала. Если функция s(t) имеет фурье-плотность мощности сигнала (спектральная плотность энергии сигнала) определяется выражением:

w(t) = s(t)s*(t) = |s(t)|2  |S()|2 = S()S*() = W(). (5.2.9)

Спектр мощности W()-вещественная неотрицательная четная функция, которую обычно называют энергетическим спектром. Спектр мощности, как квадрат модуля спектральной плотности сигнала, не содержит фазовой информации о его частотных составляющих, а, следовательно, восстановление сигнала по спектру мощности невозможно. Это означает также, что сигналы с различными фазовыми характеристиками могут иметь одинаковые спектры мощности. В частности, сдвиг сигнала не отражается на его спектре мощности. Последнее позволяет получить выражение для энергетического спектра непосредственно из выражений (5.2.7). В пределе, для одинаковых сигналов u(t) и v(t) при сдвиге t 0, мнимая часть спектра Wuv () стремится к нулевым значениям, а реальная часть - к значениям модуля спектра. При полном временном совмещении сигналов имеем:

т.е. энергия сигнала равна интегралу квадрата модуля его частотного спектра - сумме энергии его частотных составляющих, и всегда является вещественной величиной.

Для произвольного сигнала s(t) равенство

обычно называют равенством Парсеваля (в математике – теоремой Планшереля, в физике – формулой Релея). Равенство очевидно, так как координатное и частотное представления по существу только разные математические отображения одного и того же сигнала. Аналогично для энергии взаимодействия двух сигналов:

Из равенства Парсеваля следует инвариантность скалярного произведения сигналов и нормы относительно преобразования Фурье:

В целом ряде чисто практических задач регистрации и передачи сигналов энергетический спектр сигнала имеет весьма существенное значение. Периодические сигналы переводятся в спектральную область в виде рядов Фурье. Запишем периодический сигнал с периодом Т в виде ряда Фурье в комплексной форме:

Интервал 0-Т содержит целое число периодов всех подынтегральных экспонент, и равен нулю, за исключением экспоненты при k = -m, для которой интеграл равен Т. Соответственно, средняя мощность периодического сигнала равна сумме квадратов модулей коэффициентов его ряда Фурье:

Энергетический спектр сигнала – это распределение энергии базисных сигналов, которые составляют негармонический сигнал, на оси частот. Математически энергетический спектр сигнала равен квадрату модуля спектральной функции:

Соответственно амплитудно-частотный спектр показывает множество амплитуд составляющих базисных сигналов на частотной оси, а фазо-частотный – множество фаз

Модуль спектральной функции часто называют амплитудным спектром, а ее аргумент – фазовым спектром.

Кроме того, существует и обратное преобразование Фурье, позволяющее восстановить исходный сигнал, зная его спектральную функцию:

Например, возьмем прямогульный импульс:

Еще один пример спектров:

Частота Найквиста, теорема Котельникова .

Частота Найквиста — в цифровой обработке сигналов частота, равная половине частоты дискретизации. Названа в честь Гарри Найквиста. Из теоремы Котельникова следует, что при дискретизации аналогового сигнала потерь информации не будет только в том случае, если спектр (спектральная плотность)(наивысшая частота полезного сигнала) сигнала равен или ниже частоты Найквиста. В противном случае при восстановлении аналогового сигнала будет иметь место наложение спектральных «хвостов» (подмена частот, маскировка частот), и форма восстановленного сигнала будет искажена. Если спектр сигнала не имеет составляющих выше частоты Найквиста, то он может быть (теоретически) продискретизирован и затем восстановлен без искажений. Фактически «оцифровка» сигнала (превращение аналогового сигнала в цифровой) сопряжена с квантованием отсчѐ тов — каждый отсчѐ т записывается в виде цифрового кода конечной разрядности, в результате чего к отсчетам добавляются ошибки квантования (округления), при определенных условиях рассматриваемые как «шум квантования».

Реальные сигналы конечной длительности всегда имеют бесконечно широкий спектр, более или менее быстро убывающий с ростом частоты. Поэтому дискретизация сигналов всегда приводит к потерям информации (искажению формы сигнала при дискретизации—восстановлении), как бы ни была высока частота дискретизации. При выбранной частоте дискретизации искажение можно уменьшить, если обеспечить подавление спектральных составляющих аналогового сигнала (до дискретизации), лежащих выше частоты Найквиста, для чего требуется фильтр очень высокого порядка, чтобы избежать наложения «хвостов». Практическая реализация такого фильтра весьма сложна, так как амплитудно-частотные характеристики фильтров имеют не прямоугольную, а гладкую форму, и образуется некоторая переходная полоса частот между полосой пропускания и полосой подавления. Поэтому частоту дискретизации выбирают с запасом, к примеру, в аудио компакт-дисках используется частота дискретизации 44100 Герц, в то время как высшей частотой в спектре звуковых сигналов считается частота 20000 Гц. Запас по частоте Найквиста в 44100 / 2 - 20000 = 2050 Гц позволяет избежать подмены частот при использовании реализуемого фильтра невысокого порядка.

Теорема Котельникова

Для того, чтобы восстановить исходный непрерывный сигнал из дискретизированного с малыми искажениями (погрешностями), необходимо рационально выбрать шаг дискретизации. Поэтому при преобразовании аналогового сигнала в дискретный обязательно возникает вопрос о величине шага дискретизации Интуитивно нетрудно понять следующую идею. Если аналоговый сигнал обладает низкочастотным спектром, ограниченным некоторой верхней частотой Fe, (т.е. функция u(t) имеет вид плавно изменяющейся кривой, без резких изменений амплитуды), то вряд ли на некотором небольшом временном интервале дискретизации эта функция может существенно изменяться по амплитуде. Совершенно очевидно, что точность восстановления аналогового сигнала по последовательности его отсчетов зависит от величины интервала дискретизации Чем он короче, тем меньше будет отличаться функция u(t) от плавной кривой, проходящей через точки отсчетов. Однако с уменьшением интервала дискретизации существенно возрастает сложность и объем обрабатывающей аппаратуры. При достаточно большом интервале дискретизации возрастает вероятность искажения или потери информации при восстановлении аналогового сигнала. Оптимальная величина интервала дискретизации устанавливается теоремой Котельникова (другие названия — теорема отсчетов, теорема К. Шеннона, теорема X. Найквиста: впервые теорема была открыта в математике О. Коши, а затем описана повторно Д. Карсоном и Р. Хартли), доказанной им в 1933 г. Теорема В. А. Котельникова имеет важное теоретическое и практическое значение: дает возможность правильно осуществить дискретизацию аналогового сигнала и определяет оптимальный способ его восстановления на приемном конце по отсчетным значениям.

Согласно одной из наиболее известных и простых интерпретаций теоремы Котельникова, произвольный сигнал u(t), спектр которого ограничен некоторой частотой Fe может - быть полностью восстановлен по последовательности своих отсчетных значений, следующих с интервалом времени

Интервал дискретизации и частоту Fe (1) в радиотехнике часто называют соответственно интервалом и частотой Найквиста. Аналитически теорема Котельникова представляется рядом

где k — номер отсчета; — значение сигнала в точках отсчета — верхняя частота спектра сигнала.

Частотное представление дискретных сигналов .

Большинство сигналов можно представить в виде ряда Фурье:

Преобразование Лапласа

Преобразование Лапласа — интегральное преобразование, связывающее функцию комплексного переменного (изображение) с функцией вещественного переменного (оригинал).

Свойства преобразования Лапласса:

1. Линейность. Для любых комплексных постоянных a и b

Ортогональное преобразование дискретных сигналов (преобразование Фурье)

Как известно, наряду с описанием сигналов посредством задания их мгновенных значений в виде формул, определяющих зависимости от времени x(t). (т.е. во временной области, т.к. аргумент - время t), существует и другой способ - спектральное представление сигналов, при котором сигналы задаются спектрами.

Переход от временного представления сигнала к спектральному и обратно называются ортогональными преобразованиями.

Каждому виду сигнала x(t) соответствует свой спектр X(jw), связанный с x(t) преобразованием Фурье:

Преобразование Фурье обладает следующими свойствами:

Преобразование Адамара.

Преобразование Адамара, или преобразование Уолша-Адамара позволяет раскладывать сигналы произвольной формы в обобщенный ряд Фурье. Это достигается за счет применения ортонормированных базисов. Любую матрицу Адамара порядка 2N можно рекурсивно получить из N так:

В качестве примера рассчитаем дискретное преобразование Уолша-Адамара последовательности (1, 2, 0, 3). Матрица адамара порядка 4х4 равна

Следовательно дискретное преобразование Уолша-Адамара вышеприведенной полседовательности будет выглядеть следующим образом:

Быстрое преобразование Адамара.

Пусть имеется вектора. Его преобразование Адамара есть вектор Вектор называется спектром Адамара исходного вектора. Обратное преобразование можно рассматривать как разложение вектора по столбцам при этом число перемен знаков в соответствующем столбце рассматривается как аналог частоты. Разобьем вектор представив его в виде блоков длины Имеем

Для вычисления блоков можем применить аналогичную формулу. Таким образом реализуется быстрое преобразование Адамара


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-04-11; Просмотров: 8138; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.024 с.)
Главная | Случайная страница | Обратная связь