Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
ИЛИ ПРОСТРАНСТВЕННОМУ ИЗГИБУСтр 1 из 11Следующая ⇒
Основные определения
Косым изгибом называется такой изгиб, при котором вся нагрузка на балку действует в одной плоскости и эта плоскость не совпадает с плоскостями, в которых лежат главные центральные оси инерции сечения (плоскости и на рис. 5.3). При косом изгибе изогнутая ось представляет собой плоскую кривую и плоскость, в которой она расположена, не совпадает с плоскостью действия нагрузки. При пространственном изгибе нагрузка приложена в разных плоскостях (рис. 5.4), деформированная ось является пространственной кривой. При косом или пространственном изгибе в сечении стержня возникают четыре усилия: , , и . Нормальные напряжения в произвольной точке сечения определяются по формуле, полученной из (5.1) при , . (5.3) Касательные напряжения от поперечных сил, если нельзя воспользоваться формулой Журавского, допустимо не учитывать. Порядок проверки прочности балки, работающей в условиях косого или пространственного изгиба, тот же, что и для балки, работающей при плоском поперечном изгибе. Для этого необходимо: · построить эпюры внутренних усилий[2]. Для построения эпюр внутренних усилий раскладываем нагрузки на вертикальную и горизонтальную составляющие. Вертикальная составляющая вызывает изгиб относительно горизонтальной оси , горизонтальная – относительно оси ; · выбрать опасные сечения – сечения, где имеет место наиболее неблагоприятное сочетание изгибающих моментов; · в опасных сечениях найти опасные точки – точки с максимальными нормальными напряжениями; · записать условие прочности в этих точках. Из условия прочности либо подобрать размеры поперечного сечения, либо найти допускаемую нагрузку, либо просто сделать вывод о возможности безопасной эксплуатации конструкции. Определение положения опасных точек в стержне произвольного поперечного сечения производится по схеме, описанной ранее во вступительной части разд. 5. Поскольку в уравнении нейтральной линии (5.4) отсутствует свободный член, то нейтральная линия проходит через центр тяжести сечения (рис. 5.5). Построив нейтральную линию и эпюру нормальных напряжений, найдем положение опасных точек. Допустим, что напряжение в точке 1 больше, чем в точке 1¢ (это можно определить по масштабу, если построить сечение и эпюру напряжений в масштабе). Условие прочности в опасной точке 1, которая находится в линейном напряженном состоянии, записывается так: . (5.5) Значение зависит от материала, из которого сделана балка, и для хрупкого материала необходимо учесть направление (растягивающее или сжимающее) . Для некоторых форм сечений, а именно прямоугольника, двутавра и других сечений, угловые точки которых находятся в углах прямоугольника, нет необходимости для записи условий прочности находить положение опасных точек. Для таких сечений положение опасных точек не зависит от угла наклона нейтральной линии, и опасные точки – это всегда угловые точки сечения. Условие прочности в этих точках записывается следующим образом: , (5.6) где и – моменты сопротивления поперечного сечения относительно главных центральных осей.
Перемещения балки, работающей в условиях косого или пространственного изгиба, можно находить любым способом. Обычно это делают методом Максвелла – Мора, перемножая эпюры с помощью правила Верещагина. От вертикальной составляющей нагрузки точки оси балки перемещаются по вертикали (вдоль оси ). Вертикальная составляющая полного прогиба находится по формуле . (5.7) Перемещения точек оси балки вдоль оси , вызванные горизонтальной составляющей нагрузки, определяются аналогично: . (5.8) Эти перемещения для точки оси балки показаны на рис. 5.5. Полное перемещение (отрезок на рис. 5.5) является геометрической суммой составляющих и . Отметим такую закономерность: при косом изгибе отрезок должен быть в точности перпендикулярен нейтральной линии [2], при пространственном изгибе этот угол, как правило, должен быть близок к . При косом изгибе плоскость, в которой лежит изогнутая ось стержня, не совпадает с плоскостью действия нагрузки. Это отличает косой изгиб от прямого, при котором плоскость действия нагрузки совпадает с одной из главных плоскостей осей инерции сечения и изогнутая ось лежит в той же плоскости. Пример расчета балки при пространственном изгибе (задача № 28) Условие задачи Балка загружена нагрузкой, показанной на рис. 5.6. Сила кН действует в вертикальной плоскости, кН – в горизонтальной, пара сил кН× м – в плоскости, расположенной под углом к оси . Требуется: 1) из условия прочности подобрать номер двутавра;
2) найти полное перемещение точки оси балки (см. рис. 5.6); 3) нарисовать сечение балки в масштабе и показать на нем нейтральную линию и полное перемещение точки . Определить угол между нейтральной линией и полным перемещением[3]. Решение Разложим нагрузку на вертикальную (рис. 5.7, а) и горизонтальную (рис. 5.7, в) составляющие и построим эпюры и (рис. 5.7, б, г). Чтобы правильно поставить знаки изгибающих моментов, необходимо на рисунках показывать направление осей и , так как в соответствии с правилом знаков для изгибающего момента в задачах сложного сопротивления знак момента зависит от направления осей. Эпюры моментов строим со стороны растянутых волокон в той плоскости, в которой действует нагрузка. По эпюрам выбираем опасные сечения. В рассматриваемом примере их два: сечение , в котором действуют кН× м и кН× м, и сечение с изгибающими моментами кН× м и кН× м. Условие прочности в опасных точках двутавра имеет вид (5.6). Поскольку отношение моментов сопротивления зависит от номера двутавра, а он неизвестен, примем это отношение условно[4] равным 10.
Тогда условие прочности (5.6) в опасных точках сечения примет вид , где допускаемое напряжение для стали принято = 160 МПа; величины изгибающих моментов переведены из кН× м в кН× см. Из написанного условия прочности найдем необходимый момент сопротивления см3. По сортаменту прокатной стали подбираем номер двутавра. Для двутавра № 50 с такими характеристиками: см3 и см3 условие прочности в опасных точках сечения кН/см2 не выполняется, поэтому увеличиваем двутавр. Проверим прочность для двутавра № 55, у которого см3 и см3: кН/см2. Убедимся в том, что условие прочности выполняется и в опасных точках опасного сечения : кН/см2. Обратите внимание на величину напряжений от изгибающего момента , действующего в горизонтальной плоскости, которую показывает второй член в сумме. Видно, что, несмотря на то, что в рассмотренном примере существенно меньше , напряжения от больше, чем напряжения от (или они примерно одинаковы). Это говорит об опасности изгиба в горизонтальной плоскости, особенно для двутавров, у которых . Найдем перемещение точки . Будем искать по формуле (5.7) сначала вертикальную составляющую перемещения, вызванную вертикальной составляющей нагрузки. Формулу Максвелла – Мора (5.7) интегрируем по правилу Верещагина, перемножая эпюры и (рис. 5.7, б, е). Если хотя бы одна эпюра на участке имеет форму трапеции, используем для перемножения правило трапеций [6]. кН× м3. Аналогично определим по (5.8) горизонтальную составляющую перемещения[5], перемножая эпюры и (рис. 5.7, г, е). кН× м3. Положительные знаки перемещений свидетельствуют о том, что перемещения происходят по направлениям единичных сил, т. е. вертикальное перемещение – вниз (по направлению оси ), горизонтальное – по направлению оси . Сосчитаем найденные составляющие перемещения (в см), разделив их на соответствующие жесткости. кН× см2, кН× см2, см, см. Из сравнения величин и видно, что горизонтальная составляющая перемещения, даже при небольшой горизонтальной нагрузке, много больше (особенно для двутавра) вертикальной составляющей. Выполним последнюю часть задачи. Нарисуем сечение балки в масштабе, покажем на нем нейтральную линию и полное перемещение. Уравнение нейтральной линии (5.4) в опасном сечении С имеет вид[6] или . Нейтральная линия, построенная по этому уравнению, и эпюра нормальных напряжений в сечении показаны на рис. 5.8. Знаки напряжений соответствуют положительным знакам изгибающих моментов. Угловые точки 1, 1¢ – это опасные точки сечения, в которых мы ранее находили напряжения.
Найдем угол (см. рис. 5.8) между нейтральной линией и осью : . Отложим в масштабе найденные ранее вертикальную и горизонтальную составляющие перемещения с учетом их направления. Полное перемещение точки – отрезок на рис. 5.8 равен геометрической сумме и . Угол между полным перемещением и осью . Таким образом, угол между полным перемещением и нейтральной линией , что близко к .
Популярное:
|
Последнее изменение этой страницы: 2016-04-11; Просмотров: 677; Нарушение авторского права страницы