|
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Метод контурных токов в матричной форме
В соответствии с введенным ранее понятием матрицы главныхконтуров В, записываемой для главных контуров, в качестве независимых переменных примем токи ветвей связи, которые и будут равны искомым контурным токам. Уравнения с контурными токами получаются на основании второго закона Кирхгофа; их число равно числу независимых уравнений, составляемых для контуров, т.е. числу ветвей связи c=n-m+1. Выражение (6) запишем следующим образом:
В соответствии с методов контурных токов токи всех ветвей могут быть выражены как линейные комбинации контурных токов или в рассматриваемом случае токов ветвей связи. Если элементы j–го столбца матрицы В умножить соответствующим образом на контурные токи, то сумма таких произведений и будет выражением тока j–й ветви через контурные токи (через токи ветвей связи). Сказанное может быть записано в виде матричного соотношения
где С учетом (8) соотношение (7) можно записать, как:
Полученное уравнение представляет собойконтурные уравнения в матричной форме. Если обозначить
то получим матричную форму записи уравнений, составленных по методу контурных токов:
где В развернутой форме (12) можно записать, как:
Рассмотрим пример составления контурных уравнений. Пусть имеем схему по рис. 2. Данная схема имеет четыре узла (m=4) и шесть обобщенных ветвей (n=6). Число независимых контуров, равное числу ветвей связи, c=n-m+1=6-4+1=3. Граф схемы с выбранным деревом (ветви 1, 2, 3) имеет вид по рис. 3.
.Диагональная матрица сопротивлений ветвей
Матрица контурных сопротивлений
Матрицы ЭДС и токов источников
Тогда матрица контурных ЭДС
Матрица контурных токов
Таким образом, окончательно получаем: где Анализ результатов показывает, что полученные три уравнения идентичны тем, которые можно записать непосредственно из рассмотрения схемы по известным правилам составления уравнений по методу контурных токов.
Метод узловых потенциалов в матричной форме На основании полученного выше соотношения (4), представляющего собой, как было указано, матричную запись закона Ома, запишем матричное выражение:
где Матрицы Z и Y взаимно обратны. Умножив обе части равенства (14) на узловую матрицу А и учитывая первый закон Кирхгофа, согласно которому
получим:
Выражение (16) перепишем, как:
Принимая потенциал узла, для которого отсутствует строка в матрице А, равным нулю, определим напряжения на зажимах ветвей:
Тогда получаем матричное уравнение вида:
Данное уравнение представляет собой узловые уравнения в матричной форме. Если обозначить
то получим матричную форму записи уравнений, составленных по методу узловых потенциалов:
где В развернутом виде соотношение (22) можно записать, как:
то есть получили известный из метода узловых потенциалов результат. Рассмотрим составление узловых уравнений на примере схемы по рис. 4.
Данная схема имеет 3 узла (m=3) и 5 ветвей (n=5). Граф схемы с выбранной ориентацией ветвей представлен на рис. 5. Узловая матрица (примем
Диагональная матрица проводимостей ветвей:
где Матрица узловых проводимостей
Матрицы токов и ЭДС источников
..Следовательно, матрица узловых токов будет иметь вид:
.Таким образом, окончательно получаем: где Анализ результатов показывает, что полученные уравнения идентичны тем, которые можно записать непосредственно из рассмотрения схемы по известным правилам составления уравнений по методу узловых потенциалов. Литература
Контрольные вопросы и задачи
Ответ:
Ответ: | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Лекция N 7. Преобразование энергии в электрической цепи. Мгновенная, активная, реактивная и полная мощности синусоидального тока. |
Передача энергии w по электрической цепи (например, по линии электропередачи), рассеяние энергии, то есть переход электромагнитной энергии в тепловую, а также и другие виды преобразования энергии характеризуются интенсивностью, с которой протекает процесс, то есть тем, сколько энергии передается по линии в единицу времени, сколько энергии рассеивается в единицу времени. Интенсивность передачи или преобразования энергии называется мощностью р. Сказанному соответствует математическое определение:
Выражение для мгновенного значения мощности в электрических цепях имеет вид:
Приняв начальную фазу напряжения за нуль, а сдвиг фаз между напряжением и током за
Итак, мгновенная мощность имеет постоянную составляющую и гармоническую составляющую, угловая частота которой в 2 раза больше угловой частоты напряжения и тока. Когда мгновенная мощность отрицательна, а это имеет место (см. рис. 1), когда u и i разных знаков, т.е. когда направления напряжения и тока в двухполюснике противоположны, энергия возвращается из двухполюсника источнику питания. Такой возврат энергии источнику происходит за счет того, что энергия периодически запасается в магнитных и электрических полях соответственно индуктивных и емкостных элементов, входящих в состав двухполюсника. Энергия, отдаваемая источником двухполюснику в течение времени t равна Среднее за период значение мгновенной мощности называется активной мощностью Принимая во внимание, что
Активная мощность, потребляемая пассивным двухполюсником, не может быть отрицательной (иначе двухполюсник будет генерировать энергию), поэтому Популярное:
|
Последнее изменение этой страницы: 2016-04-11; Просмотров: 1340; Нарушение авторского права страницы