Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Метод контурных токов в матричной форме



В соответствии с введенным ранее понятием матрицы главныхконтуров В, записываемой для главных контуров, в качестве независимых переменных примем токи ветвей связи, которые и будут равны искомым контурным токам.

Уравнения с контурными токами получаются на основании второго закона Кирхгофа; их число равно числу независимых уравнений, составляемых для контуров, т.е. числу ветвей связи c=n-m+1. Выражение (6) запишем следующим образом:

. (7)

 

В соответствии с методов контурных токов токи всех ветвей могут быть выражены как линейные комбинации контурных токов или в рассматриваемом случае токов ветвей связи. Если элементы j–го столбца матрицы В умножить соответствующим образом на контурные токи, то сумма таких произведений и будет выражением тока j–й ветви через контурные токи (через токи ветвей связи). Сказанное может быть записано в виде матричного соотношения

, (8)

 

где - столбцовая матрица контурных токов; - транспонированная контурная матрица.

С учетом (8) соотношение (7) можно записать, как:

(9)

 

Полученное уравнение представляет собойконтурные уравнения в матричной форме. Если обозначить

, (10)

 

. (11)

 

то получим матричную форму записи уравнений, составленных по методу контурных токов:

, (12)

 

где - матрица контурных сопротивлений; - матрица контурных ЭДС.

В развернутой форме (12) можно записать, как:

, (13)

 

то есть получили известный из метода контурных токов результат.

Рассмотрим пример составления контурных уравнений.

Пусть имеем схему по рис. 2. Данная схема имеет четыре узла (m=4) и шесть обобщенных ветвей (n=6). Число независимых контуров, равное числу ветвей связи,

c=n-m+1=6-4+1=3.

Граф схемы с выбранным деревом (ветви 1, 2, 3) имеет вид по рис. 3.

Запишем матрицу контуров, которая будет являться матрицей главных контуров, поскольку каждая ветвь связи входит только в один контур. Принимая за направление обхода контуров направления ветвей связи, получим:

В

 

.Диагональная матрица сопротивлений ветвей

Z

 

 

Матрица контурных сопротивлений

Zk=BZBT

 

.

Матрицы ЭДС и токов источников

 

 

Тогда матрица контурных ЭДС

 

.

Матрица контурных токов

.

Таким образом, окончательно получаем:

,

где ; ; ; ; ; ; ; ; .

Анализ результатов показывает, что полученные три уравнения идентичны тем, которые можно записать непосредственно из рассмотрения схемы по известным правилам составления уравнений по методу контурных токов.

 

Метод узловых потенциалов в матричной форме

На основании полученного выше соотношения (4), представляющего собой, как было указано, матричную запись закона Ома, запишем матричное выражение:

, (14)

 

где - диагональная матрица проводимостей ветвей, все члены которой, за исключением элементов главной диагонали, равны нулю.

Матрицы Z и Y взаимно обратны.

Умножив обе части равенства (14) на узловую матрицу А и учитывая первый закон Кирхгофа, согласно которому

, (15)

получим:

.. (16)

Выражение (16) перепишем, как:

. (17)

 

Принимая потенциал узла, для которого отсутствует строка в матрице А, равным нулю, определим напряжения на зажимах ветвей:

. (18)

Тогда получаем матричное уравнение вида:

. (19)

Данное уравнение представляет собой узловые уравнения в матричной форме. Если обозначить

(20)

 

, (21)

то получим матричную форму записи уравнений, составленных по методу узловых потенциалов:

(22)

 

где - матрица узловых проводимостей; - матрица узловых токов.

В развернутом виде соотношение (22) можно записать, как:

(23)

то есть получили известный из метода узловых потенциалов результат.

Рассмотрим составление узловых уравнений на примере схемы по рис. 4.

Данная схема имеет 3 узла (m=3) и 5 ветвей (n=5). Граф схемы с выбранной ориентацией ветвей представлен на рис. 5.

Узловая матрица (примем )

А

 

Диагональная матрица проводимостей ветвей:

Y ,

 

где .

Матрица узловых проводимостей

.

Матрицы токов и ЭДС источников

 

..Следовательно, матрица узловых токов будет иметь вид:

 

.Таким образом, окончательно получаем:

,

где ; ; ; ; .

Анализ результатов показывает, что полученные уравнения идентичны тем, которые можно записать непосредственно из рассмотрения схемы по известным правилам составления уравнений по методу узловых потенциалов.

Литература

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

Контрольные вопросы и задачи

  1. В чем заключаются преимуществаиспользования матричныхметодоврасчета цепей?
  2. Запишите выражения матрицы контурных сопротивлений и матрицы контурных ЭДС.
  3. Запишите выражения матрицы узловых проводимостей и матрицы узловых токов.
  4. Составить узловые уравнения для цепи на рис. 2.

Ответ:

.

  1. Составить контурные уравнения для цепи рис. 4, приняв, что дерево образовано ветвями 3 и 4 (см. рис. 5).

Ответ:

.

Лекция N 7. Преобразование энергии в электрической цепи. Мгновенная, активная, реактивная и полная мощности синусоидального тока.

 

Передача энергии w по электрической цепи (например, по линии электропередачи), рассеяние энергии, то есть переход электромагнитной энергии в тепловую, а также и другие виды преобразования энергии характеризуются интенсивностью, с которой протекает процесс, то есть тем, сколько энергии передается по линии в единицу времени, сколько энергии рассеивается в единицу времени. Интенсивность передачи или преобразования энергии называется мощностью р. Сказанному соответствует математическое определение:
. (1)

 

Выражение для мгновенного значения мощности в электрических цепях имеет вид:

. (2)

 

Приняв начальную фазу напряжения за нуль, а сдвиг фаз между напряжением и током за , получим:

. (3)

 

Итак, мгновенная мощность имеет постоянную составляющую и гармоническую составляющую, угловая частота которой в 2 раза больше угловой частоты напряжения и тока.

Когда мгновенная мощность отрицательна, а это имеет место (см. рис. 1), когда u и i разных знаков, т.е. когда направления напряжения и тока в двухполюснике противоположны, энергия возвращается из двухполюсника источнику питания.

Такой возврат энергии источнику происходит за счет того, что энергия периодически запасается в магнитных и электрических полях соответственно индуктивных и емкостных элементов, входящих в состав двухполюсника. Энергия, отдаваемая источником двухполюснику в течение времени t равна .

Среднее за период значение мгновенной мощности называется активной мощностью .

Принимая во внимание, что , из (3) получим:

. (4)

 

Активная мощность, потребляемая пассивным двухполюсником, не может быть отрицательной (иначе двухполюсник будет генерировать энергию), поэтому , т.е. на входе пассивного двухполюсника . Случай Р=0, теоретически возможен для двухполюсника, не имеющего активных сопротивлений, а содержащего только идеальные индуктивные и емкостные элементы.


Поделиться:



Популярное:

  1. A. затраты АТП на выполнение перевозок в денежной форме, расчитанные на единицу транспортной продукции.
  2. I.Извещение о проведении аукциона в электронной форме № 39
  3. II. Информация о проводимом аукционе в электронной форме
  4. Автомат продольно-токовой дифференциальной защиты.
  5. Анализ денежных потоков организации
  6. АНАЛИЗ ОДНОМЕРНЫХ ПОТОКОВ ПРИ НЕЛИНЕЙНЫХ
  7. В письменной форме подтверждать отказ от профилактических прививок.
  8. В работе ставится цель - изучить влияние переменного параметра в одной из параллельных ветвей на величины и фазы токов ветвей и источника питания.
  9. В ЭЛЕКТРОННОЙ ФОРМЕ ПО ТЕЛЕКОММУНИКАЦИОННЫМ КАНАЛАМ СВЯЗИ
  10. Вставьте вместо точек глаголы, данные под чертой, в нужной форме.
  11. Выявление условий возникновения и исследование резонанса токов в цепи синусоидального тока при параллельном соединении катушки индуктивности и батареи конденсаторов.
  12. ГОСУДАРСТВЕННЫЙ АППАРАТ РОССИЙСКОЙ ИМПЕРИИ ПОРЕФОРМЕННОГО ПЕРИОДА (1861—1904 гг.). первый шаг по пути к буржуазной монархии


Последнее изменение этой страницы: 2016-04-11; Просмотров: 1340; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.029 с.)
Главная | Случайная страница | Обратная связь