Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Синаптические связи мозга и верующие нейроны



 

Мозг состоит примерно из ста миллиардов нейронов нескольких сотен видов, у каждого из которых есть тело клетки, нисходящий отросток-аксон и многочисленные дендриты и терминали аксона, расходящиеся к другим нейронам и образующие примерно тысячу триллионов синаптических связей между этими ста миллиардами нейронов. Названные цифры ошеломляют. Сто миллиардов нейронов – это 1011, или единица, а за ней 11 нулей: 100000000000. Связи тысячи триллионов – квадрильон, или 1015, или единица, за которой следуют 15 нулей: 1000000000000000. Нейронов в человеческом мозге примерно столько же, сколько звезд в галактике Млечный Путь – в буквальном смысле слова астрономическое число! Количество синаптических связей мозга равнозначно количеству секунд в 30 миллионах лет. Задумайтесь об этом на минуту. Начните отсчитывать секунды способом «одна одна тысяча, две одна тысяча, три одна тысяча…» Когда доберетесь до 86400, получится количество секунд в сутках, когда достигнете 31536000, – количество секунд в году, когда наконец дойдете до одного триллиона секунд, значит, вы считаете уже примерно 30 тысяч лет. А теперь повторите этот счет продолжительностью в 30 тысяч лет еще одну тысячу раз, и вы отсчитаете количество синаптических связей в своем мозге.

 

Количество синаптических связей мозга равнозначно количеству секунд в 30 миллионах лет.

 

Разумеется, большое количество нейронов обеспечивает значительную вычислительную мощность (как добавление микросхем или карт памяти в компьютер), однако действия производятся в самих отдельных нейронах. Нейронам присуща элегантная простота, вместе с тем это прекрасные в своей сложности машины для обработки электрохимической информации. Внутри нейрона в состоянии покоя больше калия, чем натрия, а преобладание анионов, отрицательно заряженных ионов, создает внутри клетки отрицательный заряд. В зависимости от вида нейрона при введении крошечного электрода в его тело в состоянии покоя мы получим показания –70 мВ (милливольт – одна тысячная вольта). В состоянии покоя клеточная оболочка нейрона непроницаема для натрия, но пропускает калий. При стимуляции нейрона действиями других нейронов (или электрическими манипуляциями любопытных нейробиологов, вооруженных электродами) проницаемость клеточной оболочки меняется, натрий проникает в клетку и таким образом электрический баланс смещается с –70 мВ до нуля. Это явление называется возбудительным постсинаптическим потенциалом, или ВПСП. Синапс – это крохотный зазор между нейронами, следовательно, термин постсинаптический означает, что нейрон на стороне приема сигнала, преодолевающего синаптическую щель, возбуждается, чтобы достичь своего потенциала срабатывания. В отличие от этого, если стимуляция исходит от тормозящего нейрона, напряжение смещается в отрицательную сторону, от –70 мВ до –100 мВ, в итоге срабатывание нейрона становится менее вероятным. Это явление называется тормозящим постсинаптическим потенциалом, или ТПСП. Хотя различных видов нейронов насчитываются сотни, большинство мы можем отнести либо к возбудительным, либо тормозящим по типу действия.

Если при нарастании ВПСП достигает достаточного значения (в результате многочисленных срабатываний одного нейрона за другим или множества связей с другими нейронами), тогда проницаемость клеточной оболочки нейрона достигает критического значения, натрий врывается в него, вызывает мгновенный всплеск напряжения до +50 мВ, оно распространяется по всему телу клетки и поэтапно спускается по аксону в терминали. С той же быстротой напряжение нейрона вновь снижается до –80 мВ, а затем возвращается к –70 мВ в состоянии покоя. Этот процесс приобретения клеточной оболочкой проницаемости для натрия и соответствующего изменения напряжения с отрицательного на положительное, переходящее по аксону к дендритам и синаптическим связям с другими нейронами, называется потенциалом действия. Чаще мы пользуемся выражением «клетка возбудилась». Нарастание ВПСП называется суммацией. Известно два вида: (1) временная суммация, при которой двух ВПСП одного нейрона достаточно для того, чтобы принимающий нейрон достиг критической точки и возбудился; и (2) пространственная суммация, при которой два ВПСП от двух разных нейронов появляются одновременно и их достаточно для того, чтобы принимающий нейрон достиг критической точки и возбудился. Это электрохимическое изменение напряжения происходит стремительно, натриевая проницаемость распространяется последовательно по аксону от тела клетки к терминалям, и это явление, как и следовало ожидать, называется распространением. Скорость распространения зависит от двух условий: (1) диаметра аксона (чем больше, тем быстрее) и (2) миелинизации аксона (чем больше миелиновая оболочка, покрывающая и изолирующая аксон, тем быстрее происходит распространение импульса по нему).[102]

Отметим: если критическая точка возбуждения нейрона не достигнута, он не возбуждается; если критическая точка достигнута, нейрон возбуждается. Эта система работает по принципу «или-или», «все или ничего». Нейроны не возбуждаются «слегка» в ответ на слабые раздражители или «сильно» в ответ на сильные раздражители. Они либо возбуждаются, либо не возбуждаются. Следовательно, нейроны передают информацию одним из трех способов: (1) частотой возбуждения (количеством потенциалов действия в секунду), (2) местом возбуждения (какие именно нейроны возбуждаются) и (3) численностью возбуждения (сколько нейронов возбуждается). Поэтому говорят, что нейроны двоичны по действию, подобны двоичным символам компьютера, 1 и 0, соответствуют сигналу включения или выключения, проходящему или не проходящему по нервному пути. Если рассматривать эти нейронные состояния «включить или выключить» как один из типов ментального состояния, когда один нейрон дает нам два таких состояния (включение или выключение), тогда при обработке информации о мире и управляемом организме у мозга есть 2× 1015 возможных вариантов на выбор. Поскольку мы не в состоянии охватить разумом все это число, можно сказать, что мозг во всех отношениях является бесконечно большой машиной для обработки информации.

Каким образом отдельные нейроны и их потенциал действия создают сложные мысли и убеждения? Процесс начинается с так называемого нейронного связывания. «Красный круг» – пример объединения двух входящих сигналов («красный» и «круг») в один воспринимаемый объект, красный круг. Нейронные сигналы от мышц и органов чувств сливаются, двигаясь «вверх по течению», через зоны конвергенции – области мозга, объединяющие информацию, содержащуюся в разных нейронных сигналах (от глаз, ушей, органов осязания и т. д.), чтобы в итоге мы получили представление об объекте в целом, а не о бесчисленных фрагментах изображения. Глядя на перевернутый снимок президента Обамы в главе 4, мы поначалу воспринимаем лицо как одно целое и лишь потом начинаем замечать, что с глазами и ртом что-то не так; как уже объяснялось, причина в том, что две разные нейронные сети действуют с различной скоростью: сначала происходит восприятие лица в целом, затем – деталей этого лица.

Однако связывание – значительно более широкое явление. Объектов, воспринимаемых разными органами чувств, может быть множество, и все они должны связаться воедино в высших областях мозга, чтобы обрести смысл. Крупные отделы мозга, такие, как кора больших полушарий, координируют сигналы от меньших участков мозга, например от височных долей, которые, в свою очередь, объединяют нейронные события от еще меньших компонентов мозга, например от веретенообразной извилины (для распознавания лиц). Это уменьшение происходит на всем пути до уровня единственного нейрона, где нейроны с высокой избирательностью (иногда их называют «бабушкиными») возбуждаются лишь в том случае, когда субъекты видят того, кого знают. Есть нейроны, которые возбуждаются лишь в том случае, когда объект движется слева направо через поле зрения наблюдателя. Есть другие нейроны, которые срабатывают, только когда объект движется справа налево через поле зрения наблюдателя. И есть третьи нейроны, обладающие потенциалом действия только при получении сигналов ВПСП от других нейронов, возбуждающихся в ответ на диагональное движение объектов в поле зрения. Так в нейронных сетях и происходит процесс связывания. Есть даже нейроны, которые возбуждаются, только когда мы видим того, кого узнаем. Нейробиологи из Калтеха Кристоф Кох и Габриэль Крейман совместно с нейрохирургом из Калифорнийского университета в Лос-Анджелесе Ицхаком Фридом обнаружили, например, единственный нейрон, который возбуждается, когда участнику эксперимента показывают снимок Билла Клинтона и более никого. Другой срабатывает, только если участнику показать снимок Дженнифер Энистон, но лишь ее одной, без Брэда Питта.[103]

Разумеется, мы не осознаем работу наших электрохимических систем. Что мы в действительности испытываем, так это субъективные состояния мыслей и чувств, возникающие при объединении нейронных событий и названные философами квалиа. Но даже сами квалиа – один из видов эффекта нейронного связывания, объединения сигналов от бесчисленных нейронных сетей «низшего порядка». Все действительно сводится к электрохимическому процессу нейронного потенциала действия, или к возбуждению нейронов и установлению связи друг с другом с передачей информации. Как им это удается? Опять-таки благодаря химии.

Связь между нейронами возникает в немыслимо крохотной синаптической щели между ними. Когда потенциал действия нейрона устремляется по аксону и достигает его терминалей, он вызывает выброс в синапс мельчайших порций химических трансмиттерных веществ (ХТВ). Полученные соединяющимися нейронами ХТВ действуют как ВПСП, меняя напряжение и проницаемость постсинаптического нейрона, тем самым вызывая его возбуждение и распространение его потенциала действия вниз по аксону до терминалей, где он выбрасывает свои ХТВ в следующий синаптический зазор, и так далее по всей линии нейронной сети. Когда мы ушибаем палец ноги, сигнал боли проходит от болевых рецепторов в тканях нашего пальца ноги весь путь вверх до мозга, который замечает боль и передает сигнал другим участкам мозга, посылающим дополнительные сигналы в сокращающиеся мышцы, чтобы мы отдернули ногу от злополучного препятствия. Все это происходит так быстро, что кажется почти мгновенным.

Существует много видов ХТВ. К самым известным относятся катехоламины, в том числе допамин, норадреналин (норэпинефрин) и адреналин (эпинефрин). ХТВ действуют на постсинаптический нейрон, как ключ на замок. Если ключ подошел и повернулся, нейрон срабатывает; в противном случае дверь остается запертой, а постсинаптический нейрон невозбужденным. После возникновения процесса возбуждения большинство неиспользованных ХТВ возвращается в пресинаптический нейрон, где-либо используется повторно, либо разрушается моноаминоксидазой (МАО) в процессе так называемого первого поглощения. Если в синаптическом зазоре присутствует слишком много ХТВ, тогда остаток всасывается в постсинаптический нейрон в процессе второго поглощения.

Наркотики воздействуют на синапсы, выброс ХТВ и последующие процессы поглощения. Например, амфетамины ускоряют выброс ХТВ в синапсы, тем самым ускоряя процесс нейронной коммуникации, потому и называются speed («скорость»). Резерпин, который некогда был обычным назначением при психозах, разрушает пузырьки с ХТВ в пресинаптическом нейроне, поэтому МАО уничтожают их еще до использования, в итоге замедляют работу нейронных сетей, контролируют маниакальные состояния, гипертензию и другие симптомы гиперактивности нервной системы. Кокаин блокирует первое поглощение, поэтому ХТВ просто задерживаются в синапсе и способствуют ускоренному возбуждению нейронов, доводят нейронные сети до состояния взвинченности – вспомните Робина Уильямса с микрофоном перед аудиторией; в сущности, сам Уильямс в значительной мере приписывает успех своих комедий в 1980-х годах собственной кокаиновой зависимости. Как один из самых распространенных ХТВ, допамин играет решающую роль в беспрепятственной коммуникации между нейронами и мышцами, а когда его недостаточно, у пациентов наблюдаются потеря регуляции моторики и неудержимая дрожь. Эти проявления называются болезнью Паркинсона, один из методов лечения которой – L-dopa, агонист допамина, стимулирующий его выработку.

Как нам построить всю систему снизу доверху, начиная с химических трансмиттерных веществ, таких как допамин, и связывая сигналы в единую систему убеждений? Посредством поведения. Напомню, что первичная функция мозга – управлять телом и помогать ему выжить. Один из способов сделать это – посредством ассоциативного обучения, или паттерничности. Это и есть связующее звено между нейронным потенциалом действия и человеческими поступками.

 

Допамин, наркотик веры

 

Из всех химических трансмиттерных веществ, плещущихся у нас в мозге, допамин, по-видимому, самым непосредственным образом связан с нейронными коррелятами веры. В сущности, допамин играет решающую роль в ассоциативном обучении и в подкрепляющей системе мозга, которую Скиннер открыл, применяя свой метод выработки условного рефлекса, когда любому подкрепленному поведению было свойственно повторяться. По определению, подкрепление – то, что служит наградой для организма, то есть побуждает мозг заставлять тело повторять это поведение, чтобы получить еще одно позитивное подкрепление. Вот как это происходит.

В стволе разделенного головного мозга, одной из наиболее древних с точки зрения эволюции областей мозга, которая есть у всех позвоночных, имеются полости или карманы с приблизительно 15–24 тысячами вырабатывающих допамин нейронов с каждой стороны, длинные аксоны которых соединяются с другими областями мозга. Эти нейроны стимулируют выброс допамина всякий раз, когда полученное вознаграждение оказывается больше ожидаемого, в итоге индивид повторяет конкретное поведение. Выброс допамина – одна из форм предоставления информации, сообщение организму: «Сделай это еще раз». Допамин создает ощущение удовольствия, которым сопровождается решение задачи или достижение цели, в итоге организм хочет повторить то же самое поведение, будь то выжимание штанги, нажатие клавиши или манипуляции с рычагом механизма. Ты получаешь отклик (подкрепление), а твой мозг – дозу допамина. Поведение – Подкрепление – Поведение. Повторяющаяся последовательность.

Однако у допаминовой системы есть свои плюсы и минусы. К плюсам можно отнести то, что допамин имеет отношение к пучку нейронов размером с орешек арахиса, расположенному посреди мозга и называющемуся nucleus accumbens (NAcc) – прилежащим ядром, которое, как известно, ассоциируется с наградой и удовольствием. В сущности, допамин, по-видимому, служит топливом этому так называемому центру удовольствия мозга, участвующему в «кайфе», который вызывают как кокаин, так и оргазм. «Центр удовольствия» был открыт в 1954 году Джеймсом Олдсом и Питером Милнером из Университета Макгилла, которые случайно вживили электрод в NAcc крысы и обнаружили, что грызун резко возбудился. Затем ученые сконструировали аппарат, который при нажатии крысой на планку создавал небольшую электрическую стимуляцию той же области мозга. Крысы давили на планку, пока не падали в изнеможении, даже забывали про пищу и воду.[104]Тот же эффект с тех пор был выявлен у всех участвовавших в экспериментах млекопитающих, в том числе и у людей, которые перенесли операцию на мозге и получили стимуляцию NAcc. Свои ощущения они описывали словом «оргазм ».[105]Вот это и есть типичный образец позитивного подкрепления!

К сожалению, у допаминовой системы есть и минусы, а именно развивающаяся зависимость. Наркотики, вызывающие привыкание, играют роль сигнала награды, поступающего в допаминовые нейроны. Азартные игры, порнография, такие наркотики, как кокаин, способны вызвать в мозге ответный прилив допамина. Тот же эффект дают идеи, вызывающие зависимость, особенно неудачные идеи вроде тех, которые пропагандируют культы, например, призывающие к массовым самоубийствам (вспомните Джонстаун и «Небесные врата»), или религии, поощряющие действия террористов-смертников (вспомните теракты 11 сентября и 7 июля).

Важное предостережение насчет допамина: нейробиологи делают четкое различие между «предпочтением» (удовольствием) и «желанием» (мотивацией), и в настоящее время продолжаются оживленные споры о том, чему именно способствует допамин – стимуляции удовольствия или мотивации поведения. Позитивное подкрепление может привести к повторам поведения, поскольку вызывает приятные ощущения (предпочтение, или чистое удовольствие от полученной награды) или неприятные ощущения, если поведение не повторяется (желание, или мотивация избегать беспокойства из-за неполучения награды). Первая награда связана с чистым удовольствием от, допустим, оргазма, вторая – с беспокойством, которое ощущает зависимый человек, когда получение следующей дозы внушает сомнения. Исследования, на которые я ссылаюсь выше, подтверждают предположение об удовольствии, однако по результатам новых исследований ученые склоняются к мотивации.[106]Нейробиолог Рассел Полдрак из Калифорнийского университета в Лос-Анджелесе рассказывал мне, что вновь полученные данные подразумевают «роль допамина скорее в мотивации, чем в удовольствии как таковом, в то время как опиоидная система, по всей видимости, играет центральную роль в удовольствии». Например, он указывает, что «можно блокировать допаминовую систему у крыс, и они все равно будут радоваться наградам, но не захотят стараться ради их получения».[107]Это трудноуловимое, но важное отличие, однако в целях нашего понимания нейронных коррелятов веры центральным является тот момент, что допамин подкрепляет поступки, убеждения и паттерничность и таким образом является одним из первичных «наркотиков веры».

Связь между допамином и верой была установлена в ходе экспериментов, проведенных Питером Браггером и его коллегой Кристиной Моор в Бристольском университете, Англия. Исследуя нейрохимию суеверий, магического мышления и веры в паранормальные явления, Браггер и Моор обнаружили, что люди с высоким уровнем допамина с большей вероятностью находят смысл в совпадениях и усматривают значения и закономерности там, где их нет. Например, в одном исследовании сравнивали двадцать человек, объявивших, что они верят в призраков, богов, духов и заговоры, с двадцатью участниками, которые объявили о своем скептическом отношении к подобной вере. Всем участникам показали ряд слайдов с человеческими лицами, среди которых были как нормальные, так и «перепутанные», например, на некоторых глаза, уши или носы относились к другим лицам. В следующем эксперименте на экране вспыхивали существующие и произвольно составленные слова. В целом ученые обнаружили, что верующие с гораздо большей вероятностью, чем скептики, по ошибке принимали «перепутанное» лицо за настоящее, а придуманное слово – за обычное.

 

Допамин – наркотик веры. Люди с высоким уровнем допамина с большей вероятностью находят смысл в совпадениях и усматривают значения

 

и закономерности там, где их нет.

Во второй части того же эксперимента Браггер и Моор дали всем сорока участникам L-dopa, препарат, который назначают пациентам с болезнью Паркинсона, чтобы повысить уровень допамина в мозге. После этого показ слайдов с лицами и словами повторили. Прилив допамина вызывал и у верующих, и у скептиков стремление воспринимать «перепутанные» лица, а также придуманные слова как обычные. Это свидетельствует о том, что паттерничность может ассоциироваться с высоким уровнем допамина в мозге. Любопытно, что на скептиков L-dopa действовал сильнее, чем на верующих. Иначе говоря, повышенный уровень допамина, по-видимому, уменьшал скептицизм скептиков эффективнее, чем усиливал веру верующих.[108]Почему? В голову приходят два возможных объяснения: (1) возможно, уровень допамина у верующих и без того выше, чем у скептиков, значит, последние острее ощущают его влияние; или (2) возможно, склонность верующих к паттерничности уже настолько высока, что эффект допамина у них ниже, чем у скептиков. Дополнительные исследования показали, что люди, заявляющие о своей вере в паранормальные явления, по сравнению со скептиками демонстрировали повышенную склонность усматривать «закономерности, или паттерны, в шумах»[109]и приписывать смысл произвольным связям, существующим по их мнению.[110]

 

Услышать в шуме сигнал

 

Так что же именно делает допамин, усиливая веру? Согласно одной теории, пропагандируемой Моор, Браггером и их коллегами, допамин повышает соотношение «сигнал-шум», то есть количество сигналов, который ваш мозг выявляет в фоновом шуме.[111]Такова проблема обнаружения ошибок, связанная с паттерничностью. Соотношение «сигнал-шум», в сущности, и есть проблема паттерничности – поиск значимых закономерностей как в исполненных смысла, так и в бессмысленных шумах. «Сигнал-шум» – соотношение паттернов, которые ваш мозг выявляет в фоновом шуме независимо от того, настоящие это паттерны или мнимые. Каким образом допамин влияет на этот процесс?

Допамин усиливает способность нейронов передавать сигналы от одного к другому. Как? Выступая в роли агониста (в противоположность антагонисту), или вещества, усиливающего активность нейронов, допамин соединяется с особыми участками молекул рецепторов в синаптической щели нейронов, как ХТВ, обычно связывающиеся с ними.[112]При этом увеличивается уровень срабатывания нейронов в связи с распознанием паттерна, а это означает, что количество синаптических связей между нейронами скорее всего увеличится в ответ на воспринятый паттерн, тем самым впечатывая воспринятые паттерны в долгосрочную память благодаря реальному физическому росту новых нейронных соединений и усилению прежних синаптических связей.

Прилив допамина вызывает усиление обнаружения паттернов; ученые выяснили, что агонисты допамина не только способствуют обучению, но и в больших дозах могут спровоцировать симптомы психоза, такие, как галлюцинации, возможно, связанные с тонкой гранью между креативностью (избирательная паттерничность) и безумием (неизбирательной паттерничностью). Все зависит от дозы. Если она слишком велика, скорее всего, возникнут ошибки первого типа, ложноположительное срабатывание, при которых мы видим связи там, где их на самом деле нет. Если доза слишком мала, возникают ошибки второго типа, ложноотрицательное срабатывание, при которых мы упускаем из виду реально существующие связи. Все дело в соотношении «сигнал-шум».

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-05-29; Просмотров: 556; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.023 с.)
Главная | Случайная страница | Обратная связь