Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Назначение и технические характеристикиСтр 1 из 11Следующая ⇒
Ю. К. Тлостанов Лабораторный практикум по дисциплине " ОСНОВЫ ЦИФРОВОЙ ТЕХНИКИ"
НАЛЬЧИК 2002 УДК 681.335.5 (075) ББК 73 я75 Т 49
Рецензент: заместитель директора по научной работе Института информатики и проблем регионального управления Кабардино-Балкарского научного центра Т.Х.Иванов Тлостанов Ю.К. Лабораторный практикум по дисциплине " Основы цифровой техники". – Каб.-Балк. ун-т, 2002. – 110 с.
Рассмотрены вопросы, связанные с проектированием и применением наиболее распространенных цифровых узлов и устройств с жесткой логикой работы, являющихся основой для реализации различных средств обработки информации и управления. Предназначен для студентов специальности 220200 " Автоматизированные системы обработки информации и управления".
Рекомендовано РИСом университета
УДК 681.335.5 (075) ББК 73 я75 Ó Кабардино-Балкарский государственный университет им. Х.М. Бербекова, 2002
Содержание
Предисловие При изучении наук примеры не менее поучительны, чем правила И. Ньютон Цель настоящего лабораторного практикума - углубление и закрепление теоретических знаний по проектированию и применению наиболее распространенных цифровых элементов, узлов и устройств, а также приобретение навыков работы с цифровыми интегральными схемами и устройствами, построенными на их основе. Все работы лабораторного практикума проводятся фронтальным методом бригадами, состоящими, как правило, из двух студентов, по различным для каждой бригады заданиям, указанным в соответствующих описаниях работ. Приступая к лабораторному практикуму, необходимо внимательно ознакомиться с излагаемыми ниже правилами, регламентирующими порядок выполнения работ. При подготовке к лабораторной работе необходимо повторить соответствующий теоретический материал, внимательно ознакомиться с описанием работы, выполнить домашнее задание. Результаты подготовки фиксируются письменно в форме заготовки отчетов, которые выполняются каждым студентом в выделенной для этих целей тетради (желательно в клетку) и сохраняемой до конца лабораторного практикума. Заготовки отчетов должны содержать цель работы, далее по каждому пункту задания: ─ функции, реализуемые цифровым устройством, представленные в аналитической или (и) табличной форме, их преобразования, поясняющие процесс проектирования; ─ схему спроектированного узла или устройства; ─ в случаях, оговоренных в описании, - временные диаграммы, поясняющие работу цифрового устройства; ─ таблицы для записи результатов экспериментов; Исследуемые цифровые узлы и устройства собираются на одном и том же закрепленном за бригадой универсальном лабораторном стенде из элементов и интегральных схем, установленных на лицевой панели стенда. В начале каждого занятия преподаватель проводит сплошной или выборочный опрос студентов, в результате которого им дается разрешение на выполнение работы. Для получения разрешения на выполнение работы студент должен иметь заготовку отчета на выполнение работы, знать теоретический материал, относящийся к данной работе, иметь четкое представление о содержании и порядке выполнения экспериментальной части. Зачет по работе выставляется после оформления отчета и обсуждения (защиты) с преподавателем полученных результатов. Лабораторная работа 1 Логические элементы Цель работы: а) ознакомление с универсальным лабораторным стендом и приобретение навыков работы на стенде; б) исследование функционирования основных логических элементов. 1. Теоретические основы лабораторной работы Элементной базой современных цифровых устройств и систем являются цифровые интегральные схемы. Цифровая интегральная схема (ИС) – это микроэлектронное изделие, изготовленное методами интегральной технологии (чаще полупроводниковой), заключенное в самостоятельный корпус и выполняющее определенную функцию преобразования дискретных (цифровых) сигналов. Номенклатура выпускаемых промышленностью цифровых ИС достаточно обширна и, следовательно, весьма разнообразны реализуемые ими функции преобразования. Простейшие преобразования над цифровыми сигналами осуществляют цифровые ИС, получившие названия логических элементов (ЛЭ). Для описания работы цифровых ИС, а следовательно и устройств, построенных на их основе, используется математический аппарат алгебры логики или булевой алгебры. Возможность применения булевой алгебры для решения задач анализа и синтеза цифровых устройств обусловлена аналогией понятий и категорий этой алгебры и двоичной системы счисления, которая положена в основу представления преобразуемых устройством сигналов. Основы булевой алгебры Основными понятиями булевой алгебры являются понятия логической переменной и логической функции. Логической переменной называется величина, которая может принимать одно из двух возможных состояний (значений), одно из которых обозначается символом “0”, другое – “1” (для обозначения состояний возможно применение и других символов, например, “Да” и “Нет” и др.). Сами двоичные переменные чаще обозначают символами х1, х2, … В силу определения логические переменные можно называть также двоичными переменными. Логической (булевой) функцией (обычное обозначение – у) называется функция двоичных переменных (аргументов), которая также может принимать одно из двух возможных состояний (значений): “0” или “1”. Значение некоторой логической функции n переменных определяется или задается для каждого набора (сочетания) двоичных переменных. Количество возможных различных наборов, которые могут быть составлены из n аргументов, очевидно, равно . При этом, поскольку сама функция на каждом наборе может принимать значение “0” или “1”, то общее число возможных функций от n переменных равно . Таким образом, множество состояний (значений), которые могут принимать как аргументы, так и функции, равно двум. Для этих состояний в булевой алгебре определяются отношение эквивалентности, обозначаемое символом равенства (=) и три операции: а) логического сложения (дизъюнкции), б) логического умножения (конъюнкции), в) логического отрицания (инверсии), обозначаемые соответственно символами: + или - операция дизъюнкции, или или & - операция конъюнкции, - операция инверсии (* - символ аргумента или функции). Постулативно полагается, что при выполнении перечисленных операций отношения эквивалентности имеют вид: а) 0 + 0 = 0, б) 0 × 0 = 0, в) = 1, 0 + 1 = 1, 0 × 1 = 0, = 0. 1 + 0 = 1, 1 × 0 = 0, 1 + 1 = 1; 1 × 1 = 1; На основании постулатов (1) можно вывести следующие соотношения (законы) алгебры логики: 1. Законы одинарных элементов (универсального множества – а), нулевого множества – б), тавтологии – в)): а) х + 1 = 1, б) х + 0 = х, в) х + х = х, х × 1 = х; х × 0 = 0; х × х = х. 2. Законы отрицания (двойного отрицания – а), дополнительности – б), двойственности – в)): а) б) в) ; . 3. Законы абсорбции или поглощения – а) и склеивания – б): а) б) Законы двойственности (3, в), называемые также законами деМоргана, были обобщены К. Шенноном на случай произвольного (n) числа аргументов. Кроме законов, перечисленных выше и не имеющих аналогов в обычной алгебре (алгебре чисел), для алгебры логики справедливы законы обычной алгебры: коммутативные или переместительные, дистрибутивные или распределительные, ассоциативные или сочетательные. Любая логическая функция у n двоичных переменных может быть задана таблично. Такие таблицы, получившие название таблиц истинности, содержат строк, в которые записываются все возможные двоичные наборы значений аргументов, а также соответствующее каждому из этих наборов значение функции. Пример 1. Составить таблицу истинности логической функции у равнозначности (эквивалентности) трех двоичных переменных , т.е. функции, которая принимает единичное значение только при совпадении всех трех аргументов, ее образующих. Решение. Сначала выпишем все возможные наборы (комбинации) трех переменных . Таких наборов, очевидно, 8. Чтобы не ошибиться при перечислении наборов аргументов, нужно сразу приучиться перечислять их единообразно – в виде возрастающей последовательности чисел, представленных в двоичной системе счисления. Для рассматриваемого примера наборы трех переменных нужно перечислить в следующем порядке: 000, 001, 010, 011, 100, 101, 110, 111 – итого восемь двоичных чисел – от 0 до 7.
Далее для каждого набора двоичных переменных определим, исходя из смысла ситуации, соответствующее значение функции. В результате получаем таблицу истинности логической функции " равнозначность трех двоичных переменных" (табл. 1). Задание логической функции таблицей истинности не всегда удобно. При большом числе двоичных переменных (n ³ 6) табличный способ задания функции становится громоздким и теряет наглядность. Возможен и аналитический способ задания логических функций, который предусматривает запись функции в форме логического выражения, устанавливающего, какие логические операции над аргументами функции должны выполняться и в какой последовательности. Алгебра логики предполагает возможность образования сложных функций, т.е. функций, аргументы которых являются функциями других двоичных аргументов. Например, если , а и , очевидно, что . Операция замены аргументов одной функции другими функциями называется суперпозицией функций. Эта операция дает возможность выразить сложную логическую функцию через более простые (элементарные). Приведем описание некоторых, имеющих большое значение в цифровой технике, элементарных логических функций и ЛЭ, реализующих эти функции. Функция “отрицание” – это функция одного аргумента (другие названия функции: инверсия, логическая связь НЕ ). Аналитическая форма задания этой функции: где - логическая функция, - аргумент. Электронный ЛЭ, реализующий функцию “Отрицание” в виде определенных уровней электрических сигналов, называют инвертором или ЛЭ “НЕ”. Инвертор на схемах изображается, как показано на рис. 1, а. Вход ЛЭ слева, выход – справа. На выходной линии, в месте соединения ее с прямоугольником, изображается кружок – символ инверсии. На языке цифровой техники инверсия означает, что выходной сигнал (у) противоположен входному (х). Сказанное иллюстрирует рис. 1, б, на котором приведены временные диаграммы инвертора.
Функция “конъюнкция” – это функция двух или большего числа аргументов (другие названия функции: логическое умножение, логическая связь И ). Аналитическая форма задания функции двух аргумент и : или или . Функция “конъюнкция” равна 1 тогда и только тогда, когда все ее аргументы равны 1. ЛЭ, реализующий функцию “Конъюнкция” называют конъюнктором или ЛЭ “И”. На рис. 2 приведены: условное графическое изображение двухвходового (а) и трехвходового (б) конъюнкторов; временные диаграммы (в) и таблица истинности (г) двухвходового конъюнктора. ЛЭ “И” часто используют для управления потоком информации. При этом на один из его входов поступают сигналы, несущие некоторую информацию, а на другой – управляющий сигнал: пропустить информацию – 1, не пропустить – 0. ЛЭ “И”, используемый таким образом, называют вентиль.
Функция “дизъюнкция” – это функция двух или большего числа аргументов (другие названия функции: логическое сложение, логическая связь ИЛИ ). Функция равна 1, если хотя бы один из ее аргументов равен 1 (рис. 2, в). Обозначение функции “Дизъюнкция”: или . ЛЭ, реализующий функцию “дизъюнкция”, называют дизъюнктором или ЛЭ “ИЛИ”. Условное изображение и временные диаграммы ЛЭ “ИЛИ” приведены на рис. 3. Функция “штрих Шеффера” (другое название функции – логическая связь “И-НЕ” ) – это функция двух или большего числа аргументов. Таблица истинности функции “И-НЕ” представлена на рис. 4, б. Легко видеть, что это инверсия функции “И”, т.е. отрицание конъюнкции. Функция равна 1, если равен 0 хотя бы один из ее аргументов, функция равна 0 при равенстве всех аргументов 1. Обозначение функции “И-НЕ”: . Условное изображение ЛЭ, реализующего функцию “штрих Шеффера”, приведено на рис. 4, а. Используя только ЛЭ “И-НЕ”, можно реализовать любую из вышерассмотренных логических функций (НЕ, И, ИЛИ), как показано на рис. 5, а-в.
Функция “стрелка Пирса” – это функция двух или большего числа аргументов (другое название функции – логическая связь “ИЛИ-НЕ” ). Данная функция является инверсией функции “ИЛИ”, значения функции представлены на рис. 6, б, в формулах обозначается как . Условное изображение ЛЭ, реализующего функцию “ИЛИ-НЕ” приведено на рис. 6, а. ЛЭ “ИЛИ-НЕ” также, как и ЛЭ “И-НЕ” позволяет реализовывать логические функции НЕ, ИЛИ, И. Отмеченное иллюстрирует рис. 7. Функция “сумма по модулю 2”(М2) – это функция двух или большего числа аргументов. Обозначение в формулах: (в случае функции двух аргументов и ). Таблица истинности функции представлена на рис. 8, а. На рис. 8, б приведено условное графическое изображение двухвходового ЛЭ, реализующего эту функцию. Название функции связано с тем, что есть арифметическая сумма двоичных чисел и в пределах одного разряда: 0+0=0; 0+1=1; 1+0=1; 1+1=10. В последнем случае возникает единица переноса в соседний старший разряд, а в разряде самих слагаемых получается ноль. Отсюда широкое применение этого ЛЭ при построении суммирующих устройств. Функция М2 обладает интересным свойством, которое полезно запомнить: при инвертировании одного из аргументов вся функция инвертируется, т.е. . Инверсия суммы по модулю 2 для двух аргументов имеет и собственный смысл: это функция равнозначности ; она равна единице, если . Следовательно, для построения схем сравнения одноразрядных чисел достаточно проинвертировать один из аргументов или результат. Полезно запомнить также следующие очевидные соотношения:
Первые два равенства позволяют применять ЛЭ М2 в качестве управляемого инвертора. Если использовать один из входов М2 как управляющий и подавать на него уровень логического 0 или 1, то информация, поступающая по второму входу, будет пропускаться на выход без изменения или инвертироваться. В случае двух аргументов функцию М2 называют также функция неравнозначности, исключающее ИЛИ, поскольку полностью совпадают таблицы истинности этих функций. Если же функция М2 трех или большего числа аргументов, то применение названий “неравнозначность”, “исключающее ИЛИ” не правомерно. Последнее следует из сопоставления таблиц истинности этих функций (табл. 2), из которой следует, что это совершенно различные функции. Таблица 2
Стандартные ИС ЛЭ И, ИЛИ, И-НЕ, ИЛИ-НЕ имеют 2, 3, 4 или 8 входов. Число аргументов, входящих в конъюнкцию (дизъюнкцию) или ее инверсию может отличаться от числа входов ЛЭ. Типовыми ситуациями являются наличие у имеющегося ЛЭ “лишних” (неиспользуемых) в данном случае входов или, напротив, нехватка у имеющегося ЛЭ необходимого числа входов. Например, нужно получить конъюнкцию (дизъюнкцию) или ее инверсию пяти переменных. В сериях ИС нет ЛЭ с пятью входами и придется взять элемент с восмью входами, у которого окажется три “лишних” входа (рис. 9, а). Принципиально возможно поступить следующим образом: “лишние” входы подсоединить к задействованным (рис. 9, б) или подать на них некоторые константы (логические “1” или “0”), не изменяющие логику работы ЛЭ (рис. 9, в).
Рис. В других случаях число входов ЛЭ меньше числа аргументов конъюнкции (дизъюнкции) или ее инверсии. Для ЛЭ И и ИЛИ решение задачи не представляет трудностей – для получения нужного числа входов берется несколько ЛЭ, выходы которых объединяются далее элементом того же типа (рис. 10, а). На этом рисунке звездочка обозначает операцию конъюнкцию или дизъюнкцию.
К 530 ИД 14
Рис.1. Дешифратор К 530 ИД 14 (а) и способ соединения двух дешифраторов для увеличения разрядности (наращивания числа входов-выходов) (б) Линейные дешифраторы Схема дешифратора может быть построена в соответствии с уравнениями (2) и представляет собой m конъюнкторов (ЛЭ «И») с n входами, каждый из которых реализует одну из функций fj(xn, ..., x1). Такие дешифраторы называются линейными (или матричными ). Схема линейного дешифратора, имеющего n=3 входа и m=2n =8 выходов и условное графическое изображение такого дешифратора приведено на рис. 2.
Рис.2. Схема (а) линейного дешифратора «3 в 8» и его условное графического изображение (б)
Таблица истинности линейного дешифратора «3 в 8» представлена в табл.2.
Таблица 2 В таблице над обозначением разрядов входного кода проставлены соответствующие им весовые коэффициенты; всем не обозначенным в таблице значениям уj соответствуют неактивные уровни сигналов - «0». К достоинствам линейных дешифраторов относится их высокое быстродействие. Для схемы (рис. 2) время дешифрации (tд) равно среднему времени задержки распространения одного ЛЭ «3И», т.е. tд = tзд.р.ср.. В то же время для логических элементов, используемых в схемах линейных дешифраторов, характерно значительное число требуемых входов (коэффициент объединения по входу Коб) логического элемента, равное разрядности дешифрируемого числа - n. В составе ИС, выпускаемых промышленностью, обычно отсутствуют логические элементы с коэффициентом объединения более восьми и этим значением ограничена разрядность входных чисел линейного дешифратора, если не применяются дополнительные расширители по входу. При построении схем линейных дешифраторов существенным ограничением, кроме того, является высокая требуемая нагрузочная способность (коэффициент разветвления по выходу Краз.) ЛЭ входного регистра, с которых значения разрядов числа подаются на входы дешифратора. Для любого линейного дешифратора требуемая нагрузочная способность ЛЭ входного регистра равна половине общего числа логических элементов дешифратора: Краз=0, 5× 2n. Так как коэффициент разветвления базовых ЛЭ не превышает Краз=10¸ 20, то для линейных дешифраторов без принятия специальных мер максимальная разрядность дешифруемых чисел n = 4¸ 5.
1.2 Пирамидальные дешифраторы Усовершенствование структуры дешифраторов позволяет исключить отмеченные ограничения и сводится оно к формированию частичных конъюнкций, используемых в дальнейшем для получения требуемых выходных функций. Пирамидальная структура - один из видов структур дешифратора, реализующих такой принцип построения. Последний основан на том, что добавление одного разряда входной переменной увеличивает число конъюнкций вдвое за счет умножения исходной конъюнкции на дополнительную переменную в прямой и инверсной форме. Поясним сказанное следующим примером. Пусть имеется конъюнкция двух переменных х2 · х1. При введении добавочного разряда х3 эта конъюнкция образует две новых: х3х2х1 и х2х1, для получения которых потребуется два двухвходовых ЛЭ «И». Последовательно наращивая структуру, можно построить пирамидальный дешифратор на произвольное число входов. На рис. 3 приведена схема пирамидального дешифратора трехразрядного числа. Пирамидальный дешифратор четырехразрядного числа можно получить добавлением в схему (рис. 3) третьего каскада, содержащего 24=16 конъюнкторов и образующего четырехбуквенные конъюнкции. Двоичные сумматоры Цель работы: изучение правил выполнения арифметических действий над двоичными числами и исследование принципов построения двоичных сумматоров и вычитателей. 1. Теоретические основы лабораторной работы Двоичное сложение
Двоичное вычитание
Двоичное умножение
Двоичное деление Делимое Делитель Частное Пример к-го разряда к-го разряда к-го разряда
0: 0 =? 0: 1 = 0 1: 0 =? 1: 1 = 1
Для выполнения арифметических операций над двоичными числами со знаком вводят дополнительный (знаковый) разряд, который указывает, является ли число положительным или отрицательным. Если число положительное, в знаковый разряд проставляется символ 0, если же число – отрицательное, то в знаковый разряд проставляется символ 1. Например, число (+ 5) с учетом знакового разряда (отделяется точкой) запишется как 0.101, а число (-3) – как 1.011. При сложении чисел с одинаковыми знаками числа складываются и сумме присваивается код знака слагаемых, например
Несколько усложняется операция сложения чисел с разными знаками (алгебраическое сложение), что равносильно вычитанию чисел. В этом случае необходимо определить большее по модулю число, произвести вычитание и присвоить разности знак большего (по модулю) числа. Для упрощения выполнения этой операции слагаемые представляются в обратном или дополнительном кодах поскольку известно, что операция вычитания (алгебраического сложения) сводится к операции простого арифметического сложения двоичных чисел, представленных в обратном или дополнительном кодах. Положительные числа в прямом, обратном и дополнительном кодах имеют один и тот же вид, а отрицательные – различный. Чтобы представить отрицательное двоичное число в обратном коде, надо поставить в знаковый разряд 1, а во всех остальных разрядах прямого кода заменить единицы нулями, а нули – единицами, т.е. проинвертировать число. При записи отрицательного двоичного числа в дополнительном коде, надо поставить 1 в знаковый разряд, а остальные разряды получить из обратного кода числа, прибавлением 1 к младшему разряду. Приведем примеры записи двоичных чисел со знаками в прямом, обратном и дополнительном кодах. Число Прямой код Обратный код Дополнительный код +6 0.110 0.110 0.110 -5 1.101 1.010 1.011 -11 1.1011 1.0100 1.0101 Поясним процедуру вычитания чисел 5 и 3, и 3 и 5. Последовательность и взаимосвязь операций представлена в табл. 2. Таблица 2 Из приведенных примеров следует, что при использовании обратного кода в устройстве, обеспечивающем суммирование многоразрядных двоичных чисел – двоичном сумматоре, необходимо предусмотреть цепь циклического переноса. В случае использования дополнительного кода эта цепь отсутствует. Из приведенного выше можно сделать следующее заключение. В ЦУ (в компьютере, в частности) нет надобности использовать два специализированных вычислительных устройства, одно из которых – двоичный сумматор, а другое – двоичный вычитатель. Оказывается, что применение простого математического «трюка» (представление двоичных чисел в обратном или дополнительном коде) позволяет приспособить двоичный сумматор для выполнения, как операций сложения двоичных чисел, так и операций их вычитания. Более того, с помощью двоичного сумматора можно обеспечить также выполнение и операций умножения и деления двоичных чисел (т.е. всех четырех арифметических действий), поскольку умножение представляет собой последовательное сложение, а деление – последовательное вычитание. Примеры выполнения этих операций приведены в табл. 3.
Таблица 3 Двоичные сумматоры Суммирование многоразрядных двоичных чисел А=anan-1…a0 и B=bnbn-1…b0 производится путем их поразрядного сложения с переносом между разрядами. Поэтому основным узлом многоразрядных сумматоров является комбинационный одноразрядный сумматор, который выполняет арифметическое сложение трех одноразрядных чисел (цифр): цифры данного разряда первого слагаемого (ai), цифры данного разряда второго слагаемого (bi) и цифры (1 или 0) переноса из соседнего младшего разряда (pi). В результате сложения для каждого разряда получаются две цифры – сумма для этого разряда (Si) и перенос в следующий старший разряд (pi+1). Условное графическое изображение одноразрядного сумматора и его таблица истинности (функционирования) приведены на рис. 1.
Рис. 1. Условное обозначение (а) и таблица истинности (б) одноразрядного сумматора
Для синтеза схемы одноразрядного сумматора запишем выражения для Si и pi+1 (выходов сумматора): (1) (2) Схема одноразрядного сумматора, построенная в соответствии с выражениями (1) и (2) приведена на рис. 2. Многоразрядный параллельный сумматор может быть составлен из одноразрядных сумматоров, число которых равно числу разрядов слагаемых, путем соединения выхода, на котором формируется сигнал переноса данного разряда, с входом для сигнала переноса соседнего старшего разряда. Такой способ организации переноса называется последовательным. Пример построения 3-разрядного параллельного сумматора демонстрирует рис. 3. В сумматорах этого типа перенос распространяется последовательно от разряда к разряду по мере образования суммы в каждом разряде. При наиболее неблагоприятных условиях переноса, например, при сложении чисел 11…11 и 00…01 будет иметь место «пробег» единицы переноса через весь сумматор от самого младшего к самому старшему разряду. Поэтому в наихудшем случае время распространения переноса Тзд.р.пер.=n× tзд.р.пер., где tзд.р.пер. – время задержки распространения переноса в одном разряде; n – число разрядов сумматора. Данный тип сумматора наиболее прост с точки зрения схемы цепей распространения переноса, но имеет сравнительно низкое быстродействие.
Более высоким быстродействием обладают сумматоры с параллельным переносом, в которых сигналы переноса формируются во всех разрядах одновременно. Этой цели служат специальные схемы ускоренного переноса. Двоичные вычитатели В п.1.1 была показана возможность замены операции вычитания двоичных чисел операцией их сложения. Для этого уменьшаемое и вычитаемое представляются в обратном или дополнительном кодах. Рассмотрим примеры применения двоичного сумматора для выполнения операции вычитания. На рис. 4, а приведена схема 3-разрядного двоичного вычитателя, в которой вычитаемое представлено в обратном коде. Она отличается от схемы двоичного параллельного сумматора (рис. 3.) включением 3-х инверторов, обеспечивающих преобразование двоичного числа B=b2b1b0 (вычитаемого) в обратный код и цепью дополнительного (циклического) переноса с выхода переноса 3-го (старшего) разряда на вход переноса 1-го (младшего) разряда. На рис. 4, б изображена схема 3-разрядного вычитателя, в которой вычитаемое (B) представлено в дополнительном коде. Последнее достигается подачей (прибавлением) “1” к младшему разряду обратного кода вычитаемого. Необходимость в цепи циклического переноса при этом отпадает. 1.4 Двоичные сумматоры - вычитатели Популярное:
|
Последнее изменение этой страницы: 2016-04-11; Просмотров: 755; Нарушение авторского права страницы