Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Движение, его причина и направление



Движение – это изменение чего-либо. Уже на эмпирическом уровне видно, что природа как множество естественных явлений – это не нечто застывшее и неизменное, а, наоборот, то, что находится в процессе постоянного движения. Смена дня на ночь и времен года, течение воды в реках и осадки, вращение планет вокруг Солнца и возникновение новых звезд – вот только некоторые факты, на основании которых можно говорить, что в природе все время происходят изменения.

Констатация факта постоянного изменения всего нашло свое выражение уже в античности в известном изречении Гераклита о том, что «все течет, подобно реке»[51]. Эмпирическое наблюдение требует соответствующего теоретического объяснения, главным содержанием которого являются ответы на следующие вопросы: 1) Почему происходит движение? 2) Как связаны между собой разные виды движения? 3) Существует ли общее направление изменений?

Со времен античности и до Нового времени объяснение движения строилось, с одной стороны, на основе обыденных наблюдений, а с другой, – на основе таких антропоморфных предпосылок, как представление о целесообразности всего и об идеальном как объективно-субстанциональном.

В частности, согласно тому же Гераклиту, «все возникает в силу противоположности. … Космос … рождается из огня и снова сгорает дотла через определенные периоды времени, попеременно в течение совокупной вечности, происходит же это согласно судьбе. Та из противоположностей, которая ведет к возникновению космоса, называется войной и распрей, а та, что – к сгоранию – согласием и миром, изменение – путем вверх-вниз, по которому и возникает космос. Сгущаясь, огонь увлажняется и, сплачиваясь, становится водой; вода, затвердевая, превращается в землю: это путь вниз. Земля, в свою очередь, снова тает, из нее возникает вода, а из воды все остальное»[52].

Cогласно физическим представлениям Аристотеля (сохранявшим свое значение до конца эпохи Возрождения), каждое тело стремится к своему месту, причем направление и скорость движения последнего зависят от того материала, из которого оно состоит. «Легкие» тела (например, огонь) стремятся к верху, а «тяжелые» (например, камни) – к низу. Достигнув своего «естественного» места, тело приходит в состояние покоя, поэтому для того, чтобы оно вновь стало двигаться, нужен движитель. Все на Земле движется, в конечном итоге, в результате действия некоего космического перводвигателя, который, сам, будучи идеальным, вечно вращается по кругу. Логика этого рассуждения такова: круговое движение – зримый символ бесконечного, т.е. вечного; перводвигатель идеален, а идеальное – вечно; значит, вечный идеальный перводвигатель вечно движется по кругу, как бы передавая силу своего движения на Землю; земное движется также и потому, что оно стремится к перводвигателю как к совершенству[53].

Физические представления о «естественности» покоя и «насильственности» движения в Средние века часто использовались в рамках т.н. «естественной теологии», где на их основе пытались строить естественнонаучное доказательство бытия бога (перводвигатель это и есть бог).

В Новое время антропоморфизм в физике был преодолен, и в результате теоретических и экспериментальных исследований стало понятно, что покой – не естественное и не абсолютное состояние тел, а движение не всегда насильственно. В частности, согласно первому закону классической механики Ньютона движение и покой есть равновероятные состояния и любое тело вечно движется или покоится до тех пор, пока не испытает противодействия со стороны других сил.

Открытие гравитационного взаимодействия как притяжения (закон всемирного тяготения, XVII в.) и электромагнитного взаимодействия как притяжения и отталкивания (закон Кулона о взаимодействии точечных электрических зарядов, XVIII в.) в значительной мере способствовало утверждению общего представления о том, что движение – это внутреннее свойство материи, т.е. идеи о том, что движение – это самодвижение материи. Французский философ Поль Анри Гольбах (1723 – 1789) выразил эту характерную для XVIII в. мысль следующим образом: «Спросят нас: откуда эта природа получила свое движение? Мы ответим, что от самой себя, ибо она есть великое целое, вне которого ничего не может существовать. Мы скажем, что движение – это способ существования, необходимым образом вытекающий из сущности материи; что материя движется благодаря собственной энергии; что она обязана своим движением внутренне присущим ей силам»[54].

Согласно современным физическим представлениям, все множество наблюдаемых движений физических объектов в действительности представляет собой проявление четырех видов фундаментальных взаимодействий: гравитационного, электромагнитного, сильного и слабого ядерных.

Гравитационное взаимодействие обусловлено наличием у тел массы, и оно доминирует в мегамире. Закон всемирного тяготения является формальным выражением условий и величины этого взаимодействия. Электромагнитное взаимодействие обусловлено специфическим свойством ряда элементарных частиц, которое называется электрическим зарядом. Оно играет ведущую роль в макро- и микромире вплоть до расстояний, превосходящих размеры атомных ядер. Благодаря электромагнитному взаимодействию существуют атомы и молекулы и происходят химические превращения вещества. Ядерные взаимодействия проявляются лишь на расстояниях, сравнимых с размером атомного ядра. Все четыре типа фундаментальных взаимодействий весьма несхожи между собой (в частности, гравитационное взаимодействие – это только притяжение, а электромагнитное существует как притяжение и отталкивание) и обусловлены существенно разными механизмами. Тем не менее, в рамках теоретической физики существует вопрос о возможности построения единой теории всех фундаментальных взаимодействий. Тем более что в результате экспериментальных исследований взаимодействий элементарных частиц в 1983 г. было обнаружено, что при больших энергиях столкновения элементарных частиц слабое и электромагнитные взаимодействия не различаются и их можно рассматривать как единое электрослабое взаимодействие.

В современных естественных науках, а также в философии принято говорить об уровнях организации материи (выделяют физический, химический, биологический уровни организации), классификация которых основана на выделении соответствующих видов движения материи. В частности, движение материи на физическом уровне ее организации – это рассмотренные нами 4 фундаментальных взаимодействия; движение на химическом уровне – превращения веществ; на биологическом – обмен веществ внутри живого организма. Названные уровни организации материи представляют собой последовательные формы усложнения последней, при этом каждый следующий уровень не отделен от предыдущего непроходимой гранью, а является результатом его естественного развития. В частности, органические вещества могут возникать не только вследствие жизнедеятельности биологических организмов, но также и без них – в результате синтеза неорганических. В 1953 г. американский химик С. Миллер экспериментально доказал возможность абиогенного синтеза органических соединений из неорганических. Пропуская электрический разряд через смесь неорганических соединений, он получил органические кислоты.

Проблема направления движения, понятая в предельно общем смысле, может быть интерпретирована как теория тепловой смерти Вселенной (регресс) и как теория самоорганизации (прогресс).

Гипотеза о тепловой смерти Вселенной – это следствие второго начала термодинамики. Одним из первых эту гипотезу в середине XIX века высказал немецкий физик Рудольф Клаузиус (1822 – 1888) на основе толкования им второго начала термодинамики. Из второго начала следует, что на макроскопическом уровне существуют направленные и необратимые физические процессы. Для того чтобы это понять, рассмотрим следующий пример. Допустим, мы приносим в комнату только что вскипевший чайник и наливаем из него в стакан воду. Понятно, что температура воды в чайнике значительно выше температуры окружающей среды. Пусть температура воды 100 градусов, а температура в комнате 18 градусов. Что произойдет потом? Очевидно, вода постепенно остынет, а воздух немного нагреется. В конечном итоге температура воды и воздуха сравняется и будет, допустим, 18, 5 градусов, то есть наступит термодинамическое равновесие. Возможно ли развитие событий в обратном направлении, когда чайник с водой начнет отбирать тепло из воздуха и в результате опять нагреется, а воздух, соответственно, остынет? Чисто теоретически да, но реальная вероятность этого близка к нулю.

Наш мир можно рассматривать как гигантскую термодинамическую систему, которая находится в неравновесном состоянии. Энергия сконцентрирована главным образом в горячих звездах и постепенно мигрирует в гораздо более холодное межзвездное пространство. Все имеющиеся двигатели оказываются работоспособными, в конечном итоге, за счет существования указанной глобальной неравновесности. Поэтому вполне естественными является вопрос о перспективах, связанных со стремлением глобальной системы к термодинамическому равновесию.

Согласно Клаузиусу, энтропия Вселенной стремиться к максимуму. Из этого следует, что во Вселенной, в конце концов, все виды энергии должны перейти в энергию теплового движения, которая равномерно распределится по всему веществу Вселенной. После чего в ней прекратятся все макроскопические процессы или наступит «тепловая смерть»[55].

Солнечная система, например, может рассматриваться как замкнутая неравновесная термодинамическая система. Энергия здесь главным образом сосредоточена на Солнце. Более 95% используемой человеком энергии – это энергия Солнца[56]. Очевидно, если оно перестанет снабжать нас энергией, и мы израсходуем все ее запасы, то никакая работа окажется невозможной[57].

Таким образом, если и весь окружающий мир действительно считать замкнутой системой, к которой применимы выводы классической термодинамики, то при достижении равновесия он должен представлять собой однородное тело с постоянной температурой, плотностью вещества и излучения, в котором не будет возможно никакое направленное преобразование энергии[58].

Основные возражения против гипотезы тепловой смерти Вселенной следующие: 1) Вселенная не является изолированной системой. 2) Почему Вселенная, существующая неограниченный период времени, до сих пор не достигла состояния термодинамического равновесия?

Долгое время существовало представление, что способностью к самоорганизации обладают только биологические объекты и системы. После появления компьютеров, самообучающихся программ и возникновения робототехники стало понятно, что искусственные объекты тоже могут эволюционировать. Относительно недавно выяснилось, что способностью к самоорганизации могут обладать и объекты неживой природы, возникшие естественным путем без участия человека. В частности, в физике известны феномены образования устойчивых вихрей в нестационарных потоках жидкостей и газов; возникновение упорядоченного излучения в лазерах; образование и рост кристаллов. В химии – концентрационные колебания в реакции Белоусова – Жаботинского.

Необходимость и законы самоорганизации изучает синергетика. Термин «синергетика» предложил в начале 70-х гг. XX в. немецкий физик Герман Хакен (род. 1927 г.). Большой вклад в развитие теории самоорганизации внес бельгийский и американский физик Илья Пригожин (1917 – 2003). В настоящее время синергетика – это междисциплинарное направление научных исследований, предмет которого – общие закономерности самоорганизации в природных и социальных системах.

Для самопроизвольного возникновения более упорядоченных структур из структур менее упорядоченных необходимо сочетание следующих условий:

- они могут образовываться только в открытых системах[59]. Для их возникновения обязателен приток энергии извне, компенсирующий потери и обеспечивающий существование упорядоченных состояний;

- упорядоченные структуры возникают в макроскопических системах, то есть системах, состоящих из большого числа атомов, молекул, клеток и т.д. Упорядоченное движение в таких системах всегда носит кооперативный характер, так как в него вовлекается большое число объектов.

Следует особо подчеркнуть, что самоорганизация не связана с каким-либо особым классом веществ. Она существует лишь при особых внутренних и внешних условиях системы и окружающей среды.

Рассмотрим простейший пример самоорганизации – ячейки Бенара[60]. Структурирование (т.е. организацию) первоначально однородной жидкости можно наблюдать при возникновении конвекции (перемешивании ее слоев). Пусть в начальный момент жидкость находится в покое при некоторой постоянной температуре. Далее начнем подогревать ее снизу. По мере повышения интенсивности нагрева возникает явление конвекции: нагретый нижний слой жидкости расширяется, становится более легким и поэтому стремиться всплыть вверх. На смену ему, сверху вниз, опускается более холодный и плотный слой. Сначала это происходит спорадически: восходящие потоки возникают то в одном, то в другом месте и существуют недолго. То есть конвекция идет в хаотическом режиме. Когда разность температур между верхним и нижним слоем жидкости достигает некоторого критического значения, картина меняется принципиальным образом. Весь объем жидкости разделяется на одинаковые ячейки, в каждой из которых происходят уже незатухающие конвекционные движения частиц жидкости по замкнутым траекториям. Характерные размеры ячеек Бенара в случае экспериментов с жидкостью находятся в миллиметровом диапазоне (10-3 м), в то время как характерный пространственный масштаб межмолекулярных сил приходится на существенно меньший диапазон: 10-10 м. Иначе говоря, отдельная ячейка Бенара содержит около 1021 молекул. Таким образом, огромное число частиц может демонстрировать когерентное (согласованное) поведение.

Ячейки Бенара могут образовываться при соответствующих условиях в любых жидкостях. Такие ячейки обнаружены на поверхности Солнца и предположительно существуют в мантии Земли. Более того, согласно современным астрономическим представлениям, наблюдаемая часть Вселенной также состоит из ячеистых структур – скоплений галактик.

Кроме самоорганизации, другим важным понятием синергетики является понятие бифуркации. Термин «бифуркация» – развилка или разделение надвое – в современной научной терминологии служит для описания особенности поведения сложных систем, которые подвержены воздействиям и напряжениям. В определенный момент такие системы должны сделать критический выбор: пойти либо по одной, либо по другой ветви развития. Простейший пример системы, находящейся в точке бифуркации – это неустойчивое равновесие шарика на поверхности выпуклой сферы большого диаметра. Шарик может скатиться с поверхности сферы в любую сторону и практически в любой момент времени. В рассмотренном примере с ячейками Бенара точкой бифуркации является случайное возникновение право- или левовращательных ячеек в жидкости. Подобная картина наблюдается и при биологической эволюции: случайная мутация, которая приведет к качественной необратимой перестройке организма, есть, говоря языком синергетики, точка бифуркации. Таким образом, понятие бифуркации может использоваться для описания изменений в самых разных системах, в том числе экологических и социальных.

Важнейшими особенностями точки бифуркации является то, что, во-первых, прохождение через нее переводит систему в качественно новое состояние, во-вторых, нельзя заранее знать, по какому именно направлению пойдет развитие системы, то есть бифуркация не детерминирована однозначно.

Следует четко представлять, что основная идея синергетики заключается в том, чтобы описать возможность самопроизвольного (без вмешательства человеческого разума) возникновения упорядочены структур из неупорядоченных или, говоря словами И. Пригожина, «порядка из хаоса»[61].


Поделиться:



Популярное:

  1. A. Оценка будущей стоимости денежного потока с позиции текущего момента времени
  2. A. Смещение суставной головки через вершину суставного бугорка на передний его скат
  3. A.27. Процедура ручной регулировки зеркала заднего вида
  4. B. С нарушением непрерывности только переднего полукольца
  5. Cсрочный трудовой договор и сфера его действия.
  6. F. Оценка будущей стоимости денежного потока с позиции текущего момента времени
  7. G) определение путей эффективного вложения капитала, оценка степени рационального его использования
  8. H) Такая фаза круговорота, где устанавливаются количественные соотношения, прежде всего при производстве разных благ в соответствии с видами человеческих потребностей.
  9. I этап в развитии учения о причинах речевых нарушений (донаучный)
  10. I. МИРОВОЗЗРЕНИЕ И ЕГО ИСТОРИЧЕСКИЕ ТИПЫ
  11. I. ПОЛОЖЕНИЯ И НОРМЫ ДЕЙСТВУЮЩЕГО ЗАКОНОДАТЕЛЬСТВА, В ОБЛАСТИ ОРГАНИЗАЦИИ ПРОТИВОПОЖАРНОЙ ПРОПАГАНДЫ И ОБУЧЕНИЯ НАСЕЛЕНИЯ МЕРАМ ПОЖАРНОЙ БЕЗОПАСНОСТИ
  12. I. Рабочее тело и параметры его состояния. Основные законы идеального газа.


Последнее изменение этой страницы: 2016-05-30; Просмотров: 675; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.017 с.)
Главная | Случайная страница | Обратная связь