Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Методы передачи данных канального уровня



На слайде показаны различные схемы бит-ориентированной передачи. Они отличаются способом обозначения начала и конца каждого кадра.

Первая схема. Начало и конец каждого кадра от­мечается одной и той же 8-битовой последовательностью — 01111110, называемой флагом. Термин «бит-ориентированный» используется потому, что принимаемый поток бит сканируется на побитовой основе для обнаружения старто­вого флага, а затем во время приема для обнаружения стопового флага. Поэтому длина кадра в этом случае не обязательно кратна 8 бит.

Чтобы обеспечить синхронизацию приемника, передатчик посылает последова­тельность байтов простоя (каждый состоит из 11111111), предшествующую старто­вому флагу.

Для достижения прозрачности данных в этой схеме необходимо, чтобы флаг не присутствовал в поле данных кадра. Это достигается с помощью приема, известного как вставка 0 бита, — бит-стаффинга. Схема вставки бита работает на передающей стороне во время передачи поля данных кадра. Если эта схема обнаруживает, что подряд передано пять 1, то она автоматически вставляет дополнительный 0 (даже если после этих пяти 1 шел 0). Поэтому последовательность 01111110 никогда не появится в поле данных кадра. Аналогичная схема работает в приемнике и выполняет обратную функцию. Когда после пяти 1 обнаруживается 0, он автоматически удаляется из поля данных.

Во второй схеме для обозначения начала кадра имеется только стартовый флаг, а для определения конца кадра используется поле длины кадра, которое при фиксированных размерах заголовка и концевика чаще всего имеет смысл длины поля данных. Эта схема наиболее применима в локальных сетях. В этих сетях для обозначения факта незанятости среды в исходном состоя­нии по среде вообще не передается никаких символов. Чтобы все остальные стан­ции вошли в битовую синхронизацию, посылающая станция предваряет, содержимое кадра последовательностью бит, известной как преамбула, которая состоит из че­редования единиц и нулей 101010... Войдя в битовую синхронизацию, приемник исследует входной поток на побитовой основе, пока не обнаружит байт начала кадра 10101011. За этим байтом следует заголовок кадра, в котором в определенном месте находится поле длины поля дан­ных. Таким образом, в этой схеме приемник просто отсчитывает заданное количе­ство байт, чтобы определить окончание кадра.

Третья схема (внизу) использует для обозначения начала и конца кадра флаги, которые включают запрещенные для данного кода сигналы (V). Например, при манчестерском кодировании вместо обязательного изменения по­лярности сигнала в середине тактового интервала уровень сигнала остается неизмен­ным и низким (запрещенный сигнал J) или неизменным и высоким (запрещенный сигнал К). Начало кадра отмечается последовательностью JK0JK000, а конец — по­следовательностью JK1JK100. Этот способ очень экономичен, так как не требует ни бит-стаффинга, ни поля длины, но его недостаток заключается в зависимости от принятого метода физического кодирования. При использовании избыточных кодов (например 4В/5В) роль сигналов J и К играют запрещенные символы.

Каждая из трех схем имеет свои преимущества и недостатки. Флаги позволяют отказаться от специального дополнительного поля, но требуют специальных мер: либо бит-стаффинга, либо запрещенных сигналов, что делает эту схему зависимой от способа кодирования.

Для большей части протоколов характерны кадры, состоящие из служебных полей фиксированной длины. Исключение делается только для поля данных, с целью экономной пересылки как небольших квитанций, так и больших файлов. Способ определения окончания кадра путем задания длины поля данных, рассмотренный выше, как раз рассчитан на такие кадры с фиксированной структурой и фиксированными размерами служебных полей.

Однако существует ряд протоколов, в которых кадры имеют гибкую структуру (например, РРР). Кадры таких протоколов состоят из неопределенного количества полей, каждое из которых может иметь переменную длину. Начало такого кадра отмечается некоторым стандартным образом, напри­мер с помощью флага, а затем протокол последовательно просматривает поля кад­ра и определяет их количество и размеры. Каждое поле обычно описывается двумя дополнительными полями фиксированного размера.

 

Методы обнаружения и коррекции ошибок

Обнаружение и коррекция ошибок.

Большая часть протоколов канального уровня выполняет только одну зада­чу — обнаружение ошибок, считая, что корректировать ошибки, то есть повторно передавать данные, должны протоколы верхних уровней. Однако существуют протоколы канального уровня, которые самостоятельно решают задачу вос­становления искаженных или потерянных кадров.

Но нельзя считать, что один протокол лучше другого потому, что он вос­станавливает ошибочные кадры, а другой протокол — нет. Каждый протокол дол­жен работать в тех условиях, для которых он разработан.

Методы обнаружения ошибок

Все методы обнаружения ошибок основаны на передаче служебной избыточной информации, по которой можно судить с некоторой степе­нью вероятности о достоверности принятых данных. Эту служебную информацию принято называть контрольной суммой. Контрольная сумма вычисляется как функция от основной информации, причем необязательно только путем суммирования. При­нимающая сторона повторно вычисляет контрольную сумму кадра по известному алгоритму и в случае ее совпадения делает вывод о том, что данные были переданы корректно. Существует несколько распространенных алгоритмов вычисления контрольной суммы, отличающихся вычислительной сложностью и способностью обнаружи­вать ошибки в данных.

Контроль по паритету – наиболее простой и наименее мощный метод контроля. С его помощью можно обнаружить только одиночные ошибки в проверяемых данных. Метод заклю­чается в суммировании по модулю 2 всех бит контролируемой информации. Результат суммирования также представляет собой один бит данных. При искажении любого одного бита исходных данных (или контрольного разряда) результат сумми­рования будет отличаться от принятого контрольного разряда, что говорит об ошибке. Однако двойная ошибка будет неверно принята за коррект­ные данные. Поэтому контроль по паритету применяется к небольшим порциям данных, как правило, к каждому байту, что дает коэффициент избыточности для этого метода 1/8. Метод редко применяется в вычислительных сетях из-за его боль­шой избыточности и невысоких диагностических способностей.

Вертикальный и горизонтальный контроль по паритету представляет собой моди­фикацию описанного выше метода. Его отличие состоит в том, что исходные данные рассматриваются в виде матрицы, строки которой составляют байты данных. Конт­рольный разряд подсчитывается отдельно для каждой строки и для каждого столбца матрицы. Этот метод обнаруживает большую часть двойных ошибок, однако облада­ет еще большей избыточностью. На практике сейчас также почти не применяется.

Циклический избыточный контроль (CRC) является в настоящее время наиболее популярным методом контроля в вычислительных се­тях (и не только в сетях, например, этот метод широко применяется при записи данных на диски и дискеты). Метод основан на рассмотрении исходных данных в виде одного многоразрядного двоичного числа. Например, кадр стандарта Ethernet, состоящий из 1024 байт, будет рассматриваться как одно число, состоящее из 8192 бит. В качестве контрольной информации рассматривается остаток от деле­ния этого числа на известный делитель R. Обычно в качестве делителя выбирается семнадцати- или тридцати трехразрядное число, чтобы остаток от деления имел длину 16 разрядов (2 байт) или 32 разряда (4 байт). При получении кадра данных снова вычисляется остаток от деления на тот же делитель R, но при этом к данным кадра добавляется и содержащаяся в нем контрольная сумма. Если остаток от де­ления на R равен нулю1, то делается вывод об отсутствии ошибок в полученном кадре, в противном случае кадр считается искаженным.

Этот метод обладает более высокой вычислительной сложностью, но его диаг­ностические возможности гораздо выше, чем у методов контроля, по паритету. Метод CRC обнаруживает все одиночные ошибки, двойные ошибки и ошибки в нечетном числе бит. Метод обладает также невысокой степенью избыточности. Например, для кадра Ethernet размером в 1024 байт контрольная информация длиной в 4 байт составляет только 0, 4 %.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-05-30; Просмотров: 826; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.011 с.)
Главная | Случайная страница | Обратная связь