Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Общие сведения о нефти и нефтепродуктах
В свете Классификация нефтепродуктов Нефтеперерабатывающая промышленность выра современных представлений нефть состоит из низко- и высокомолекулярных углеводородных и неуглеводородных компонентов. Полностью разделить нефть на индивидуальные соединения невозможно, да этого и не требуется ни для технической характеристики нефтяного сырья, еш для его промышленного использования. Достаточно ее разделить на отдельные более или менее узкие фракции перегонкой, адсорбцией и др., методами. К тому же, по химическому составу нефти различных месторождений весьма разнообразны. По этой причине обсуждение можно вести лишь о характеристиках «среднестатистической» нефти. В качестве молекулярных характеристик нефти и нефтепродуктов необходимо использовать даже большее число, чем для макромолекул, различных по точности, объективности и глубине охвата показателей свойств. Их можно рассматривать в первом приближении по пяти группам. 1. Брутто-характеристики элементного состава. 2.Средняя молекулярная масса и связанные с ней физические характеристики (пределы выкипания, плотность и др.). 3.Групповой состав нефти и нефтепродуктов. 4.Показатели интегрального структурного анализа (ИСА). 5.Комплексные показатели свойств. При исследовании качества новых нефтей (т. е. составлении технического паспорта нефти) фракционный состав их определяют на стандартных перегонных ап Элементный и фракционный состав нефти По современным представлениям нефть это горная порода и является сложной системой органических веществ.[5, 6, 7] Нефть состоит из низко- и высокомолекулярных углеводородных и неуглеводородных компонентов. По химическому составу нефти различных месторождений весьма разнообразны и состоят главным образом из углеводорода, водорода и серы, кислорода и азота. Средний элементарный состав нефти представлен в табл.1
Таблица 1
Наряду с углеродом и водородом во всех нефтях присутствуют сера, кислород и азот. В сумме содержание этих элементов редко превышает 8—10 % мас. Азота в нефти содержится не более 1, 5 % мас. В основном он входит в состав высокомолекулярных, конденсированных (смолистых) соединений. Также в состав высокосмолистых соединений входят кислород (0, 1—2 % мас.) и некоторое количество серы. В отличие от азота и кислорода основное количество серы сосредоточено в низкомолекулярных соединениях парафинового ряда. Кроме вышеназванных элементов, в нефтях обнаружены в незначительных количествах очень многие элементы, в том числе Са, Mg, Fe, Al, Si, Ge, V, Ni, Na, Bi и др. Содержание этих элементов выражается незначительными долями процента., Например, в нефтепродуктах германий был определен в количестве 0, 15—0, 19 г/т. Всего в нефтях найдено более 50 элементов. Интересно отметить, что ванадий и никель, являясь микроэлементами в земной коре, по содержанию в нефтях занимают первое место среди металлов. Причем ванадий содержится преимущественно в сернистых и смолистых нефтях. Поскольку нефть и нефтепродукты представляют собой непрерывную смесь углеводородов и гетероатомных соединений, то обычными методами перегонки не удается разделить на индивидуальные соединения. Принято разделять нефть и нефтепродукты путем перегонки на отдельные компоненты, каждый из которых является менее сложной смесью. Такие компоненты называются фракциями или дистиллятами а нефть и нефтепродукты характеризуются не температурой кипения, а температурными пределами начала кипения (н.к.) и конца кипения (к.к.). паратах, снабженных ректификационными колонками (например, на АРН-2 по ГОСТ 11011-85). Это позволяет значительно улучшить четкость погоноразделения и построить по результатам фракционирования так называемую кривую истинных температур кипения (ИТК) в координатах температура - выход фракций в % масс. (или % об.). Отбор фракций до 200°С проводится при атмосферном давлении, а более высококипящих — под вакуумом во избежание термического разложения. По принятой методике от начала кипения до 300 °С отбирают 10-градусные, а затем 50-градусные фракции до температуры к.к. 475-550 °С. Таким образом, фракционный состав нефтей (кривая ИТК) показывает потенциальное содержание в них отдельных нефтяных фракций, являющихся основой для получения товарных нефтепродуктов (автобензинов, реактивных и дизельных топлив, смазочных масел и др.). Для всех этих нефтепродуктов соответствующими ГОСТами нормируется определенный фракционный состав. При промышленной перегонки нефти используется не лабораторный метод постепенного испарения, а схемы с так называемым однократным испарением и последующей ректификацией. Фракции, выкипающие до 350 °С отбирают при давлениях несколько превышающих атмосферное; они носят название светлых дистиллятов (фракций). Обычно при атмосферной перегонке получают фракции, которым присваивается название в зависимости от направления дальнейшего использования: Н.к. (начало кипения) - 140 °С - бензиновая фракция; 140-180 °С — лигроиновая фракция (тяжелая нафта); 140-220 °С (140-240 °С) - керосиновая фракция; 180-350 °С (220-350 °С, 240-350 °С) - дизельная фракция (легкий или атмосферный газойль, соляровый дистиллят). Остаток после отбора светлых дистиллятов (фракция, выкипающая выше 350 °С) называют мазутом. Мазут разгоняют под вакуумом, при этом в зависимости от направления переработки нефти получают следующие фракции: Для получения топлив: 350 - 500 °С - вакуумный газойль (вакуумный дистиллят); > 500 °С - вакуумный остаток (гудрон). Для получения масел: 300-400 °С (350-420 ° С) - легкая масляная фракция (трансформаторный дистиллят); 400-450 °С — средняя масляная фракция (машинный дистиллят); 450-490 °С (420-490 °С) тяжелая масляная фракция (тяжелый дистиллят); > 490 °С - гудрон. Мазут и полученные из него фракции называют темными. Продукты, получаемые при вторичных процессах переработки нефти, так же как и при первичной перегонке, относят к светлым, если они выкипают до 350°С, и к темным, если пределы выкипания 350 °С и выше. Нефти различных месторождений заметно различаются по фракционному составу, содержанию светлых и темных фракций. Так, в Ярегской нефти (Коми) содержится 18, 8 % светлых фракций, а в Самотлорской (Западная Сибирь) - 58, 8 % Групповой и химический состав нефти Знание группового состава нефти позволяет выбрать наиболее эффективный способ ее переработки. Принято входящие в состав нефти химические соединения подразделять на три большие группы: углеводороды, гетероатомные соединения и микроэлементы. Основная масса компонентов нефти представлена тремя классами углеводородов: парафиновые (алканы), нафтеновые (циклоалканы), ароматические (арены) и гибридные — парафино-нафтено-ароматические. Парафиновые углеводороды В состав нефти могут входить газообразные (С1—С4), жидкие (С5—С15), и твердые (С16—С60) парафины. Преимущественно это углеводороды нормального строения. Парафины с разветвленной цепью составляют доли процента и построены на основе изопреноидных структур: При нормальных условиях (Р = 0, 1013 МПа и Т = 273 К) парафины С5—С15 являются жидкостями и входят в состав бензиновых (С5—С10) и керосиновых (С11—С15) фракций. Большая их часть нормального строения. Жидкие парафины существенно влияют на величину октанового и цетанового числа топлива (подробнее ниже) Углеводороды с числом углеродных атомов более 16 являются твердыми веществами: • углеводороды нормального строения С16—С35 — парафины; • углеводороды изомерного строения > С36 — изопарафины или церезины. Отличаются церезины более высокой молекулярной массой и температурой кипения. По химическим свойствам церезины менее инертны, чем парафины. Они легко реагируют с серной, азотной и хлорсульфоновой кислотами. Парафины, наоборот, очень стойки на холоде к воздействию различных сильнодействующих реагентов и окислителей. Нафтеновые углеводороды Нафтеновые (циклановые или полиметиленовые) углеводороды весьма равномерно распределены в нефтях независимо от их геологического возраста. В среднем нефти содержат до 25—75 % мас. нафтенов. Нафтены представлены в нефтях моно-, би- и полициклическими соединениями. Особенно велико содержание в бензиновых и керосиновых фракциях нефти метилзамещенных циклопентанов и циклогексанов. Полициклические конденсированные соединения содержатся в высококипящих фракциях нефти Нафтены благотворно влияют на технологические свойства масляных дистиллятов, так как обладают достаточно высокой температурой затвердевания и практически не изменяют коэффициент вязкости с температурой. Ароматические углеводороды Арены (ароматические углеводороды, содержащие одно или несколько бензольных колец, в том числе конденсированных) в нефти представлены соединениями следующих рядов: • бензол и его гомологи, СnН2n-6; • нафталин и его гомологи: СnН2n-12; • сложные конденсированные системы, состоящие из 3, 4 и 5 конденсированных ядер; • гибридные, или смешанные, углеводороды, состоящие из нафтеновых и ароматических фрагментов. Экспериментально было установлено, что для каждой из фракций нефти характерны свои ароматические углеводороды. Причем с увеличением молекулярной массы фракции содержание аренов в них повышается; ароматические углеводороды становятся все более конденсированными. Углеводороды гибридного (смешанного) строения имеют в своем составе различные структурные элементы: ароматические кольца пяти- и шестичленные циклопарафиновые циклы и алифатические парафиновые цепи. Сочетание этих элементов может быть разнообразным, а число изомеров - огромным. Например, изопропилбензол состоит из алифатической парафиновой цепи и ароматического кольца. В данном случае в ароматическую систему входит около 61 % атомов углерода, и именно ароматическое кольцо оказывает влияние на физические и химические свойства вещества. Поэтому изопропилбензол не является гибридным и относится к классу ароматических углеводородов. Для бензиновых, фракций характерно наличие почти всех изомеров гомологов бензола. При этом чем более насыщена углеродом молекула и чем более она разветвлена, тем больше их содержится во фракции. Например:
Соотношение гомологов бензола в бензиновых фракциях: В бензиновой фракции присутствует простейший гибридный, или смешанный, углеводород — индан. Условно гибридные углеводороды можно подразделить на три типа: алкано-нафтеновые; алкано-ареновые; алкано-нафте-но-ареновые. Алкано-нафтеновые углеводороды представляют собой либо длинные парафиновые цепи с циклопарафиновыми заместителями, либо моно- или полициклические структуры с несколькими более короткими боковыми парафиновыми цепями. Эти углеводороды свойственны легкокипящим фракциям нефтей. Алкано-ареновые углеводороды представляют собой нормальные парафины с фенильными заместителями в конце цепи. Число ароматических колец в них не превышает двух. Такие углеводороды встречаются в керосиновых фракциях. Алкано-нафтено-ареновые углеводороды, как правило, содержат одно или два ароматических кольца конденсированного типа и от одного до трех полиметиленовых колец. Число ароматических колец в таких системах редко достигает трех. Этот тип гибридных углеводородов наиболее распространен среди углеводородов высокомолекулярной части нефти. В керосиновых фракциях ароматические углеводороды также представлены гомологами бензола, но с более длинными углеводородными цепями, чем в бензиновых фракциях: где R1 и R2 — углеводородные радикалы < С12. Наряду с ними, в керосиновых фракциях установлено наличие заметных количеств гомологов нафталина. Среди них встречаются метил- диметил- и полиметилзамещенные нафталины. Обнаружены также и гибридные углеводороды — тетралин и его гомологи. В более тяжелых — керосино-газойлевых, дизельных и масляных фракциях — ароматические углеводороды представлены гомологами нафталина и конденсированными ароматическими углеводородами. Причем, чем выше температуры кипения углеводородов во фракции, тем более насыщена кольцами молекула, а количество гомологов нафталина уменьшается. Например, в масляных фракциях обнаружены аналоги антрацена. В очищенных товарных маслах гибридные углеводороды алкано-нафтенового типа представлены преимущественно моно- и бициклическими ц кланами с длинными алкильными цепями (до 50-70 % масс.). Выделенные и из нефти арены можно использовать в разных целях. Главным образом - это ценное сырье для промышленного органического и нетфехимического синтеза (бензол, толуол, этилбензол, ксилолы, нафталин). Возможна их добавка к моторным маслам, так как они наименее склонны к детонации. А вот в дизельном топливе они нежелательны, так как ухудшают процесс его сгорания. Популярное:
|
Последнее изменение этой страницы: 2016-06-05; Просмотров: 2577; Нарушение авторского права страницы