Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Теорема. Обратная теорема. Доказательство методом от противного.



Теорема – это утверждение, справедливость которого устанавливается путем рассуждения. Само рассуждение называется доказательством теоремы.

Теорема обратная данной – это теорема, в которой условием является заключение данной теоремы, а заключением – ее условие. Например: Теорема: В равнобедренном треугольнике углы при основании равны. Обратная теорема: Если в треугольнике два угла равны, то он является равнобедренным.

Следствие – это утверждение, которое выводится непосредственно из теоремы. Например: следствием из теоремы о высоте равнобедренного треугольника является: Медиана равнобедренного треугольника, проведенная к основанию, является высотой и биссектрисой.

Доказательство методом от противного заключается в следующем:

1) Делается предположение противоположное тому, что надо доказать.

2) Затем, исходя из предположения, путем рассуждений приходят к противоречию либо с условием, либо с известным фактом.

3) На основании полученного противоречия делается вывод о том, что предположение неверно, а значит верно то, что требовалось доказать.

 

Признак равенства прямоугольных треугольников по гипотенузе и катету.

Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны.

Дано:

DАВС – пр/уг

Ð А = 900

Ð А1 = 900

АВ= А1В1

ВС=В1С1

Доказать:

DАВС = DА1В1С1

 

Доказательство:

1. Приложим к DАВС к DА1В1С1, так чтобы вершина А совместилась с вершиной А1, вершина В с вершиной В1, а вершины С и С1 оказались по разные стороны от прямой АВ.

2. Так как АВ= А1В1 Þ они совпадут.

3. Ð СА1С1= 900 + 900 = 1800 Þ Ð СА1С1 – развернутый и Þ точки С, А1 и С1 – лежат на одной прямой.

4. Рассмотрим DСВС1 – р/б (ВС= В1С1 по условию)Þ Ð С = Ð С1 (по свойству)

5. Таким образом, DАВС = DА1В1С1 – по гипотенузе и острому углу. (ч.т.д.)

 

Билет №9.

Перпендикулярные прямые. Перпендикуляр к прямой.

Перпендикулярные прямые – это две прямые, которые при пересечении образуют четыре прямых угла.(показать на рисунке)

Перпендикуляр к прямой – это отрезок, опущенный из точки на прямую под прямым углом. Точка пересечения отрезка и прямой называется основанием перпендикуляра (показать на рисунке)

Теоремы:

1)Из точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой и притом только один.

2)Две прямые перпендикулярные к одной и той же прямой не пересекаются.

Признак равнобедренного треугольника.

Если в треугольнике два угла равны, то он является равнобедренным.

Дано:

DАВС

Ð А = ∠ С

Доказать:

DАВС – р/б

 

Доказательство:

1. Мысленно скопируем DАВС и перевернем копию – получим DСВА.

2. Наложим DСВА на DАВС, так чтобы вершина С копии совместилась с вершиной А DАВС.

3. Так как Ð А = Ð С (по условию) Þ Ð А копии и Ð С треугольника при наложении совпадут, так же Ð С копии и Ð А треугольника при наложении совпадут.

4. Отрезок СВ копии наложится на луч АВ треугольника и отрезок АВ копии наложится на луч СВ треугольника.

5. Так как две прямые могут иметь только одну общую точку пересечения ⇒

т. В1 совпадет с точкой В и ⇒ АВ совместится с СВ ⇒ АВ=СВ

6. Из того, что АВ=СВ ⇒ по определению Δ АВС - равнобедренный(ч.т.д.)

 

Билет №10.

Равнобедренный треугольник.

Треугольник, у которого две стороны равны, называется равнобедренным. Равные стороны называются боковыми сторонами, а третья сторона – основанием. (показать на рисунке)

Свойство равнобедренного треугольника: В равнобедренном треугольнике углы при основании равны.(показать на рисунке)

Признак равнобедренного треугольника: Если в треугольнике два угла равны, то он является равнобедренным. (показать на рисунке)

Теорема о высоте равнобедренного треугольника: Высота равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой. (показать на рисунке)

Следствия из теоремы о высоте равнобедренного треугольника:

1) Медиана равнобедренного треугольника, проведенная к основанию, является высотой и биссектрисой. (показать на рисунке)

2) Биссектриса равнобедренного треугольника, проведенная к основанию, является высотой и медианой. (показать на рисунке)

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-07-12; Просмотров: 5784; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.015 с.)
Главная | Случайная страница | Обратная связь