Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Загрязнение продовольственного сырья и пищевых продуктов ксенобиотиками химического происхождения (ПК-1, ПК-4, ПК-7).



Количественная характеристика токсичности веществ достаточно сложна и требует многостороннего подхода. Судить о ней приходится по результатам воздействия вещества на живой организм, для которого характерна индивидуальная реакция, индивидуальная вариабельность, поскольку в группе испытуемых животных всегда присутствуют более или менее восприимчивые к действию изучаемого токсина индивидуумы.

Существуют две основные характеристики токсичности - ЛД50 и ЛД100. ЛД - аббревиатура летальной дозы, т. е. дозы, вызывающей при однократном введении гибель 50 или 100 % экспериментальных животных. Дозу обычно определяют в размерности концентрации. Токсичными считают все те вещества, для которых ЛД мала. Принята следующая классификация веществ по признаку острой токсичности (ЛД50 для крысы при пероральном введении, мг/кг):

Чрезвычайно токсичные < 5

Высокотоксичные 5...50

Умеренно токсичные 50...500

Малотоксичные 500...5 000

Практически нетоксичные 5 000...15 000

Практически безвредные > 15 000

Величина t^5 характеризует время полувыведения токсина и продуктов его превращения из организма. Для разных токсинов оно может составлять от нескольких часов до нескольких десятков лет.

В случае одновременного и последовательного поступления в организм нескольких чужеродных веществ обнаруживается их комбинированное действие. Оно является результатом физических или химических взаимодействий друг с другом или с микро- или макронутриентами пищи; индукции или ингибирования ферментных систем, других биологических процессов.

Различают два основных эффекта:

антагонизм - эффект воздействия двух или нескольких веществ, при котором одно вещество ослабляет действие другого вещества (например, действие ртути и селена в организме животных и человека);

синергизм - эффект воздействия, превышающий сумму эффектов воздействия каждого фактора (например, комбинированное воздействие ксенобиотиков и некоторых медикаментов).

При хронической интоксикации решающее значение приобретает способность вещества проявлять кумулятивные свойства, т. е. накапливаться в организме и передаваться по пищевым цепям. В связи с возникающей опасностью отдаленных последствий важнейшее значение приобретают следующие воздействия ксенобиотиков:

канцерогенное (возникновение раковых опухолей);

мутагенное (качественные и количественные изменения в генетическом аппарате клетки);

тератогенное (аномалии в развитии плода, вызванные структурными, функциональными и биохимическими изменениями в организме матери и плода).

На основе токсикологических критериев (с точки зрения гигиены питания) международными организациями ООН, ВОЗ, ФАО и др., а также органами здравоохранения отдельных государств, приняты следующие базисные (основные) показатели: ПДК, ДСД и ДСП.

ПДК (предельно допустимая концентрация) - установленные законом предельно допустимые с точки зрения здоровья человека количества вредных (чужеродных) веществ в атмосфере, воде, продуктах питания с точки зрения безопасности их для здоровья человека. ПДК - это такие концентрации, которые при ежедневном воздействии в течение сколь угодно длительного времени не могут вызывать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований, в жизни настоящего и последующих поколений.

ДСД (допустимая суточная доза) - ежедневное поступление вещества, которое не оказывает негативного влияния на здоровье человека в течение всей жизни.

ДСП (допустимое суточное потребление) - величина, рассчитываемая как произведение ДСД на среднюю величину массы тела (60 кг).

Токсичные элементы являются наиболее распространенными загрязнителями пищевых продуктов. Они имеют важную особенность. Большинство из них относится к рассеянным элементам (микроэлементам), которые присутствуют в микроколичествах повсеместно: в подземных и поверхностных водах, горных породах, почвах, атмосферном воздухе, растениях и животных. С пищей, водой и воздухом эти вещества поступают в организм человека.

При этом по мере загрязненности почв металлами увеличивается их содержание в сельскохозяйственных растениях, а затем и продуктах животного происхождения Потребление пищевых продуктов, содержащих повышенные количества тяжелых металлов, представляет риск для здоровья людей, который может проявляться острыми и хроническими интоксикациями, а также мутагенным, канцерогенным и эмбриотоксическим эффектами. Для предупреждения этих последствий необходим строгий контроль со стороны органов госсанэпиднадзора за попаданием в пищевую продукцию соединений токсичных элементов, как из внешней среды, так и в результате деятельности человека, направленной на интенсификацию процессов производства продуктов питания.

Во всех видах продовольственного сырья и пищевых продуктов нормируются токсичные элементы: свинец, мышьяк, кадмий, ртуть. Дополнительно к перечисленным элементам в консервированных продуктах (консервы из мяса, мясорастительные; консервы из субпродуктов; консервы птичьи; консервы молочные; консервы и пресервы рыбные; консервы из печени рыб; консервы овощные, фруктовые, ягодные; консервы грибные; соки, нектары, напитки, концентраты овощные, фруктовые, ягодные в сборной жестяной или хромированной таре; джемы, варенье, повидло, конфитюры, плоды и ягоды, протертые с сахаром, плодоовощные концентраты с сахаром в сборной жестяной или хромированной таре) нормируются олово и хром. В продуктах переработки растительных масел и животных жиров, включая рыбный жир (маргарины, кулинарные жиры, кондитерские жиры, майонезы, фосфатидные концентраты), наряду со свинцом, мышьяком, кадмием и ртутью нормируется никель

Биологически активными являются и некоторые другие элементы, способные стимулировать определенные физиологические процессы в организме (например, мышьяк - кроветворение), однако их жизненная необходимость до сих пор не доказана. Все микроэлементы, даже эссенциальные, в определенных дозах токсичны. Из них только 4 (свинец, мышьяк, кадмий, ртуть) могут быть безоговорочно отнесены к токсичным. Они не являются жизненно необходимыми и даже в малых дозах приводят к нарушению нормальных метаболических функций организма. Загрязнение водоемов, атмосферы, почвы, сельскохозяйственных растений и пищевых продуктов токсичными металлами обусловлено действием следующих факторов:

выбросов промышленных предприятий и ТЭЦ (особенно угольной, металлургической и химической промышленности);

выбросов городского транспорта (имеется в виду загрязнение свинцом от сгорания этилированного бензина);

использованием в сельском хозяйстве металлсодержащих пестицидов;

применения в консервном производстве некачественных внутренних покрытий и при нарушении технологии припоев;

контакта с оборудованием (для пищевых целей допускается весьма ограниченное число сталей и других сплавов).

Присутствие соединений металлов в пищевых продуктах в количествах в 2-3 раза превышающих фоновые, нежелательно, а в количествах, превышающих допустимые уровни - недопустимо. В России подлежат обязательному контролю в пищевых продуктах 10 химических элементов -свинец, мышьяк, кадмий, ртуть, цинк, медь, олово, хром, никель, железо.

Свинец - один из самых распространенных и опасных токсикантов. Он находится в микроколичествах почти повсеместно. Источник природного свинца в биосфере - горные породы, которые содержат его от 0, 8 до 2 000 мкг/кг. Средний уровень свинца в поверхностном слое почвы - 1, 6 мг/кг.

Свинец, как правило, сопутствует другим металлам, чаще всего цинку, железу, кадмию и серебру. Большие залежи свинецсодержащих руд встречаются во многих частях света. Мировое производство свинца составляет более 3, 5 млн т в год.

Свинец используют в виде металла и его химических соединений. В настоящее время перечень областей его применения очень широк. Наибольшая доля добываемого свинца идет на изготовление свинцовых аккумуляторов для автомобилей, электротранспорта и других целей. Его традиционно используют в химическом машиностроении, атомной и военной промышленности, для изготовления электрических кабелей, телевизионных трубок и флуоресцентных ламп, при производстве эмалей, лаков, хрусталя, пиротехнических изделий, спичек, пластмасс, для пайки швов жестяных банок, в полиграфии.

Кадмий. О большой опасности загрязнения почвы кадмием свидетельствует массовая интоксикация кадмием жителей бассейна реки Дзинцу в Японии. Цинковый рудник загрязнил кадмием реку, воду которой использовали для питья и орошения рисовых полей и соевых плантаций. Спустя 15...30 лет 150 человек умерли от хронического отравления кадмием. Содержание кадмия в рисе - основном продукте питания - достигало 600...1 000мкг/кг, что явилось причиной заболевания, вошедшего в историю эндемических отравлений тяжелыми металлами под названием итаи-итаи.

В природе кадмий не встречается в свободном виде и не образует специфических руд. Его получают как сопутствующий продукт при рафинировании цинка и меди. В земной коре содержится около 0, 05 мг/кг кадмия, в морской воде - 0, 3 мкг/л. По своей электронной конфигурации кадмий напоминает цинк. Он обладает большим сродством к тиоловым группам и замещает цинк в некоторых металлферментных комплексах. Кадмий легко образует пары. Кадмий относится к числу сильно ядовитых веществ и не является необходимым элементом для млекопитающих.

В организме человека среднего возраста содержится около 50 мг кадмия, 1/3 - в почках, остальное количество - в печени, легких и поджелудочной железе. Период полувыведения кадмия из организма составляет 13.40 лет.

Как металлический кадмий, так и его соли оказывают выраженное токсическое действие на людей и животных. Механизмы токсичности кадмия заключаются в том, что он ингибирует ДНК-полимеразу, нарушает синтез ДНК (стадию расплетения), разделяет окислительное фосфорилирование в митохондриях печени. Патогенез отравления кадмием включает также взаимодействие его с высокомолекулярными белками, особенно тиолсодержащими ферментами.

Механизм токсического действия кадмия связан с блокадой сульфгидрильных групп белков; кроме того, он является антагонистом цинка, кобальта, селена, ингибирует активность ферментов, содержащих указанные металлы. Известна способность кадмия нарушать обмен железа и кальция. Все это может привести к широкому спектру заболеваний: гипертоническая болезнь, анемия, ишемическая болезнь сердца, почечная недостаточность и другие. Отмечены канцерогенный, мутагенный и тератогенный эффекты кадмия.

Желудочно-кишечная абсорбция кадмия для человека составляет 3.8 %. На нее влияет уровень потребления цинка и растворимость солей кадмия. Будучи абсорбированным, кадмий остается в организме, подвергаясь лишь незначительной экскреции. Главные центры накопления - печень и почки. В этих органах 80 % кадмия связано с металлотионеинами. В то же время, биологической функцией металлотионеинов является участие их в гомеостазе необходимых элементов - цинка и меди. Поэтому кадмий, взаимодействуя с металлотионеинами, может нарушать гомеостаз биогенных меди и цинка.

Наличие кадмия в тканях вызывает симптомы, связанные с дефицитом меди, цинка и железа. Кальций плазмы крови снижает абсорбцию кадмия в кровь. Содержание кадмия в тканях тем больше, чем меньше количество кальция в пище. Хроническая интоксикация кадмием нарушает минерализацию костей и увеличивает концентрацию кальция в печени. Он также блокирует синтез витамина D.

Мышьяк. В Аргентине наблюдалось хроническое отравление мышьяком, вызванное потреблением воды, содержащей от 1 до 4 мг/л Аs2О3. Аналогичная ситуация наблюдалась в Чили. Употребление колодезной воды, содержащей 0, 6мг/л мышьяка, привело к локальным хроническим отравлениям на о. Тайвань.

В Балтиморе была обнаружена территория, где смертность от рака в 4, 3 раза выше, чем в городе в целом. Эта полоса окружает бывшую фабрику, производившую в течение 100 лет мышьяк.

Трагический случай произошел в Японии в 1955 г., когда отравилось более 12 000 детей. Их кормили молочной смесью, в состав которой входило сухое молоко, загрязненное оксидом мышьяка (III). Он случайно попал в фосфат натрия, которым стабилизировали порошок молока. Фосфат натрия являлся отходом при выделении алюминия из боксита, в котором содержалось существенное количество мышьяка. Более 120 детей погибли от потребления смеси через 33 дня при ежедневной дозе Аs203 5 мг.

Медь. Медь была одним из первых металлов, которые человечество стало использовать в чистом виде. Это объясняется не только простотой ее извлечения из руд, но и тем, что медь находится в природе в чистом виде. С открытием бронзы - сплава меди с оловом начался бронзовый век. В настоящее время сплавы цинка с медью играют большую роль в жизни миллионов людей в Китае и Индии. Производство меди в мире достигает 6 млн т. Около половины меди используется в электротехнической промышленности, для изготовления водопроводных и отопительных систем, варочного оборудования, в сельском хозяйстве и фармакологии.

Медь является биомикроэлементом, необходимым для нормального течения многих физиологических процессов - остеогенеза, функции воспроизводства и др. Она присутствует во многих металлоферментах и других белках, обусловливая их стабильность и сохранение конформации. Медь существует в одно- и двухвалентном состояниях. Среднее содержание меди в почвах 20 мг/кг, в пресных водах - 0, 001.0, 2 мг/л, в морской воде -0, 02.0, 045 мг/л. В организме взрослого человека обнаруживается около 100 мг меди. Суточная потребность взрослого человека в меди 2.2, 5 мг, то есть 35...40 мкг/кг массы тела, для детей - 80 мкг/кг. Безопасный уровень потребления меди составляет для взрослого человека 1, 5.3, 0 мг/сутки. Однако при нормальном содержании в пище молибдена и цинка - физиологических антагонистов меди, по оценке экспертов ФАО, суточное потребление меди может составлять не более 0, 5 мг/кг массы тела (до 30 мг в рационе). При поступлении с пищей в кишечнике человека всасывается около 30 % содержащейся меди.

Медь малотоксична. При повышенном поступлении с пищей резорбция ее снижается, что уменьшает риск развития интоксикации. Медь обладает селенантагонистическими свойствами: симптомы дефицита селена обнаруживаются у животных при введении меди в больших количествах. При поступлении в пищу высоких концентраций солей меди у людей и животных наблюдаются токсические эффекты, которые, как правило, обратимы. В некоторых случаях отмечена взаимосвязь между раком легких и накоплением меди. Летальной для организма человека является концентрация меди 0, 175-0, 250 г/сут.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-07-12; Просмотров: 1136; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.016 с.)
Главная | Случайная страница | Обратная связь