Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Построение системы ОДУ для вероятностей состояний и среднего относительного числа заявок в системах сети



Рассмотрим замкнутую сеть массового обслуживания с разнотипными заявками, которая является вероятностной моделью обслуживания заявок в УП «Проектный институт Гродногипрозем», рис.1.1.

•••

Рис.1.1. Модель обслуживания заявок в УП «Проектный институт Гродногипрозем».

Допустим, что заявка типа требуемой обслуживания, . Таким образом, в течение определенного интервала времени с требованиями по обслуживанию могут обращаться заявки заявка типа . Вначале все заявки поступают в систему , которыми занимается сотрудников. Заявки клиентов могут находиться в одном из следующих состояний: ― заявка не подается, ― заявка находится на стадии рассмотрения, ― заявка находится на стадии выполнения. Переход заявки типа из состояния в состояние происходит в случайные моменты времени, независимо от того в каком состоянии находятся другие заявки, и независимо от времени, таким образом, что вероятность перехода на интервале времени равна , где - интенсивность такого перехода. Можно предположить, что интенсивность является кусочно-постоянной функцией от времени с четырмя интервалами постоянства на отрезке времени :

где считаем, что это количество недель за год. Так же учитывается время года: интенсивность потока заявок может быть различной взависимости от времени года. Будем предполагать, что наша система в некоторый момент находится в состоянии

если в этот момент заявка типа находится в состояние , ― общее число заявок, находящихся в состоянии тогда - число заявок в состоянии

Пусть, кроме того, ― относительное число линий обслуживания заявки, , ― относительное число заявок, , а среднее относительное число заявок, требующих обслуживания в каждой системе, .

Как указано выше, вероятностной моделью описанного выше обслуживания предприятия может служить замкнутая сеть массового обслуживания, состоящая из систем обслуживания с числом линий обслуживания соответственно и вероятностями перехода заявок ; в сети обслуживаются заявок типа ; дисциплины обслуживания заявок в системах сети – FIFO. Для решения поставленной задачи необходимо, прежде всего, найти вектор среднего относительного числа единиц заявок, находящегося в состоянии в момент времени : Пусть интенсивность обслуживания заявок в каждой линии системы . Состояние сети описывается вектором где число заявок находящихся в момент времени в системе .[1]

Обозначим через - вектор с единицей на ом месте. Очевидно, что . Случайный процесс является марковским с непрерывным временем и дискретным множеством состояний, поскольку времена обслуживания заявок в системах сети распределены по показательному закону. Возможны следующие переходы в состояние за время для этого процесса:

из состояния с вероятностью

из состояния с вероятностью

из состояния с вероятностью

;

из состояния с вероятностью

из состояния с вероятностью

из остальных состояний с вероятностью .

Тогда, используя формулу полной вероятности, можно записать систему разностных уравнений:

Переходя к пределу при , получим систему разностно-дифференциальных уравнений Колмогорова для вероятностей состояний,

которая может быть представлена в виде

(1.1)

Решение этой системы в аналитическом виде в общем случае затруднительно. В связи с этим рассмотрим важный случай большого числа исков, когда . Чтобы найти распределения вероятностей случайного вектора удобно перейти к относительным переменным, рассматривая вектор В этом случае возможные значения этого вектора при фиксированном принадлежат ограниченному замкнутому множеству

в котором они располагаются в узлах мерной решетки на расстоянии друг от друга. При увеличении " плотность заполнения" множества возможными компонентами рассматриваемого вектора увеличивается и становится возможным считать, что он имеет непрерывное распределение с плотностью вероятностей где имеет смысл плотности вероятностей случайного вектора .

Обозначим через вектор с компонентами равными нулю за исключением ой,

Заметим, что

(1.2)

(1.3)

Переписывая систему уравнений (1.1) для плотности , получим

(1.4)

где Представим правую часть этой системы уравнений с точностью до членов порядка малости Если дважды дифференцируема по , то справедливы соотношения

Использую и то, что , систему уравнений (1.4) можно преобразовать к виду:

Введем следующие функции [2]

Тогда система уравнений (1.7) имеет вид

Таким образом, плотность удовлетворяет с точностью до членов порядка системе уравнений Колмогорова-Фоккера-Планка. Отсюда следует, что математические ожидания с точностью определяются из системы уравнений

(1.5)

Правые части уравнений (1.5) являются кусочно-линейными функциями. Определим явную форму уравнений (1.5) в областях линейности их правых частей. Пусть множество индексов компонент вектора Разобьем на два непересекающихся множества и следующим образом.

При фиксированном число разбиений такого рода равно Каждое разбиение будет задавать в множестве непересекающиеся области такие, что

Теперь можно записать систему уравнений (1.5) в явной форме для каждой из областей :

, (1.6)

где

В общем случае система уравнений (1.6) в области записывается в виде

С учетом того, что , , и , остальные , то она примет вид

Решение последней системы при произвольном затруднительно


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-07-13; Просмотров: 558; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.034 с.)
Главная | Случайная страница | Обратная связь