Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Г. - вакцина против бешенства.



Г. - вакцина против бешенства.

Основные открытия Роберта Коха:

n введение в практику анилиновых красителей;

n использование в микроскопии иммерсионной системы и конденсора;

n разработка метода культивирования микроорганизмов на биологических жидкостях и плотных питательных средах;

n разработка метода дробных пересевов;

n открытие возбудителя сибирской язвы;

n открытие возбудителя холеры;

n открытие возбудителя туберкулёза (Нобелевская премия 1905 г.) и туберкулина.

3 Габричевский - Совместно с Н. Ф. Филатовым ввёл сывороточное лечение дифтерии. Габричевский предложил для специфической профилактики скарлатины использование созданной им убитой стрептококковой вакцины. Совместно с Левенталем предложил серологическую пробу для диагностики возвратного тифа. Предложил способ культивирования анаэробов в чашках, новый способ определения активной подвижности бактерий; получил антитоксин дизентерии и противодизентерийную сыворотку.

С.Н. Виноградский- Изучая почвенное микробное сообщество разделил всех живущих в ней микроорганизмов на автохтонные (типичные, встречающиеся всегда) и аллохтонные (зимогенные) (развитие которых связано с увеличением концентрации органического вещества). Это деление оказалось применимым для большинства экосистем.

Тимаков внёс весомый вклад в изучение L-форм бактерий. Так, им было установлено, что под воздействием ряда лекарств некоторые бактерии не погибают, а лишь теряют часть своей оболочки, приобретают форму шара и становятся неузнаваемыми. L-формы различных бактерий длительное время сохраняются в организме и обладают способностью вызывать хронические заболевания. Под руководством академика Тимакова в лаборатории института был изучен процесс образования L-форм бактерий, и были проведены сравнительные исследования L-форм бактерий и микоплазм.

Здродовский – гипофизарно-гипоталамо-адреналовая теория регуляции иммунитета.

Ермольева- В 1942 году впервые в СССР получила пенициллин (крустозин ВИЭМ), впоследствии активно участвовала в организации его промышленного производства в Советском Союзе. Это изобретение спасло тысячи жизней советских солдат во время Великой Отечественной войны.

4 Принципы классификации изучает – таксономия (от греч. taxis-расположение, homos – закон) Основные таксономические единицы в систематики микроорганизмов следующие:

Ø Царство в основе тип клеточной организации (прокариоты, эукариоты, вирусы)

Ø Отдел – бактерии

Ø Класс

Ø Порядок

Ø Семейство

Ø Род

Ø Вид

Основная таксономическая единица в микробиологии вид, род, семейство.

Вид – бактерии это совокупность микроорганизмов одного генотипа, которые в одинаковых условиях имеют одинаковые фенотипические признаки. Например: Salmonella typhi (род, вид). В пределах одного вида отдельные признаки. Отдельные свойства могут варьировать, поэтому внутри вида могут вида могут определятся под виды (морфологические варианты, биоварианты, хемоварианты, фаговары, серовары(отличаются по антигенным свойствам)).

Установление принадлежности к роду и виду называется идентификацией бактерий. Для идентификации необходимо изучить все свойства микроорганизмов, обнаружить эти свойства в мире микроба. Идентификация микроорганизма происходит по набору следующих свойств: тинкториальный, кульруральных, биохимических, факторов патогенности, антигенных свойств и отношение к фагам. Для облегчения идентификации предложены специальные идентификационные ключи для определенных групп микроорганизмов это наборы признаков для микроорганизма – семейства, рода и вида. Идентификации подвергаются исключительно чистые культуры организма.

ЧКМ – микробы одного вида выращенные в лабораторных условиях на искусственных питательных средах.

Штамм – чистая культура выделенная из конкретного источника, либо чистая культура выделенная из одного источника, но в разное время.

Клон – чистая культура микробов полученная из одной бактериальной клетки

Популяция микробов – совокупность особей одного вида длительно существующих на определенной территории и изолированных от других особой того же вида, популяция единица эволюции. Например популяция сальмонеллы тифи северных регионов отличается от обитающих в южных регионов.

Бактерии

Бактерии - это одноклеточные прокариотные микроорганизмы. Ве­личина их измеряется в микрометрах (мкм). Бактерии не отличаются разнообразием форм. Различают три основные формы: шаровидные бактерии - кокки, палочковидные и извитые. Кроме того, существуют промежуточные формы (рис. 2).

Кокки (греч. kokkos - зерно) имеют шаровидную или слегка вытя­нутую форму. Различаются между собой в зависимости от того, как они располагаются после деления. Одиночно расположенные кокки - мик­рококки, расположенные попарно - диплококки. К патогенным диплококкам относятся пневмококки, имеющие ланцетовидную форму, и бо­бовидные диплококки - менингококки и гонококки. Стрептококки де­лятся в одной плоскости и после деления не расходятся, образуя цепоч­ки (греч. streptos - цепочка). Патогенные стрептококки являются возбу­дителями гнойно-воспалительных заболеваний, ангины, рожи, скарла­тины. Тетракокки образуют сочетания из четырех кокков в результате деления в двух взаимно перпендикулярных плоскостях, сарцины (лат. sarcio - связывать) образуются при делении в трех взаимно перпендику­лярных плоскостях и имеют вид скоплений по 8-16 кокков. Стафило­кокки в результате беспорядочного деления образуют скопления, напо­минающие гроздь винограда (греч. staphyle - виноградная гроздь). Сре­ди них есть патогенные виды, вызывающие гнойно-воспалительные и септические заболевания.

Палочковидные бактерии (греч. bacteria - палочка), способные образовывать споры, называют бациллами в том случае, если спора не шире самой палочки, и клостридиями, если диаметр споры превышает диаметр палочки. Палочки, неспособные к спорообразованию, называют бактери­ями. Палочковидные бактерии, в отличие от кокков, разнообразны по ве­личине, форме и расположению клеток: короткие (1 -5 мкм) толстые, с зак­ругленными концами бактерии кишечной группы; тонкие, слегка изогну­тые палочки туберкулеза; располагающиеся под углом тонкие палочки дифтерии; крупные (3-8 мкм) палочки сибирской язвы с " обрубленными" концами, образующие длинные цепочки - стрептобациллы. К извитым формам бактерий относятся вибрионы, имеющие слегка изогнутую форму в виде запятой (холерный вибрион) и спириллы, состоящие из нескольких завитков. К извитым формам также относятся кампилобактеры, похожие под микроскопом на крылья летящей чайки.

Структура бактериальной клетки. Структурные элементы бактери­альной клетки можно условно разделить на: а) постоянные структурные элементы - имеются у каждого вида бактерий, в течение всей жизни бакте­рии; это клеточная стенка, цитоплазматическая мембрана, цитоплазма, нуклеоид; б) непостоянные структурные элементы, которые способны обра­зовывать не все виды бактерий, а те бактерии, которые образуют их, могут терять их и вновь приобретать в зависимости от условий существования. Это капсула, включения, пили, споры, жгутики.

Клеточная стенка покрывает всю поверхность клетки. У грамположительных бактерий клеточная стенка более толстая: до 90% - это полимерное соединение пептидогликан, связанный с тейхоевыми кис­лотами, и слой белка. У грамотрицательных бактерий клеточная стенка тоньше, но сложнее по составу: состоит из тонкого слоя пептидогликана, липополисахаридов, белков; она покрыта наружной мембраной. Наружная мембрана грамотрицательных бактерий является барьером для некоторых антибиотиков, в том числе таких, которые получены в последнее время. Возможно, что этим можно объяснить, почему с не­давнего времени в возникновении внутрибольничных инфекций все воз­растающую роль играют грамотрицательные бактерии, такие как ки­шечная палочка, синегнойная палочка. Ранее первенство в этой области принадлежало стафилококкам.

Клеточная стенка выполняет важную биологическую роль: прида­ет бактерии определенную форму, защищает ее от воздействий окру­жающей среды, участвует в транспорте питательных веществ и про­дуктов обмена. В то же время пептидогликан клеточной стенки явля­ется мишенью для действия пенициллина и других антибиотиков, которые нарушают процесс формирования полимерного пептидогликана. Отсюда понятно, почему пенициллины действуют преимуществен­но на грамположительные бактерии, причем на молодые растущие клетки.

Значение клеточной стенки в сохранении определенной формы и в защите от окружающей среды наглядно демонстрируется на примере сферопластов и протопластов, которые образуются при разрушении клеточной стенки под действием пенициллина или лизоцима. Пол­ностью или частично лишенные клеточной стенки, они имеют сфери­ческую форму, могут выживать только в гипертонической среде и не­способны к размножению. L-формы бактерий - это бактерии, полнос­тью или частично утратившие клеточную стенку, но сохранившие спо­собность к размножению. Свое название они получили в честь инсти­тута имени Листера в Англии, где были впервые получены. Не имея клеточной стенки, они также приобретают сферическую форму. L-фор­мы возникают и в естественных условиях, длительно сохраняются в организме человека и играют важную роль в патогенезе некоторых инфекционных заболеваний.

Цитоплазматическая мембрана расположена непосредственно под клеточной стенкой. Она обладает избирательной проницаемостью, и бла­годаря этому регулирует водно-солевой обмен клетки, транспорт пита­тельных веществ в клетку и выведение наружу продуктов обмена. В этих процессах участвуют ферменты пермеазы. Кроме того, здесь имеются ферменты, осуществляющие биологическое окисление.

Цитоплазматическая мембрана путем инвагинации внутрь клетки образует мембранные структуры - мезосомы. Геном клетки (ДНК) свя­зан с мезосомой, и отсюда начинается процесс репликации ДНК при делении клетки.

Цитоплазма - внутреннее гелеобразное содержимое бактериальной клетки, пронизано мембранными структурами, создающими жест­кую систему. В цитоплазме содержатся рибосомы (в которых осуще­ствляется биосинтез белков), ферменты, аминокислоты, белки, рибонуклеиновые кислоты.

Нуклеоид - это хромосома бактерий, двойная нить ДНК, коль­цевидно замкнутая, связанная с мезосомой. В отличие от ядра эукариотов, нить ДНК свободно располагается в цитоплазме, не имеет ядерной оболочки, ядрышка, белков-гистонов. Нить ДНК во много раз длиннее самой бактерии (например, у кишечной палочки длина хро­мосомы более 1 мм).

Помимо нуклеоида, в цитоплазме могут находиться внехромосомные факторы наследственности, называемые плазмидами. Это ко­роткие кольцевидные нити ДНК, прикрепленные к мезосомам.

Включения содержатся в цитоплазме некоторых бактерий в виде зерен, которые можно обнаружить при микроскопии. Большей частью это запас питательных веществ. Например, у дифтерийных палочек на концах видны зерна волютина, и это является важным признаком для определения этого вида бактерий. Вместе с тем это могут быть и скоп­ления неорганических веществ, например, серы, и продукты бактери­ального метаболизма.

Пили (лат. pili - волоски) иначе реснички, фимбрии, бахромки, вор­синки - короткие нитевидные отростки на поверхности бактерий. Пили общего типа (common pili) в количестве нескольких сотен равномерно покрывают бактерию. Они осуществляют прикрепление (адгезию) бак­терии к клетке хозяина и участвуют в питании. Половые пили (sex-пили) имеют внутри канал и образуются только клетками-донорами. Они обеспечивают конъюгацию у бактерий и переход ДНК из одной клетки в другую.

Споры образуют среди патогенных бактерий только палочки - ба­циллы и клостридии. Споры бактерий не являются способом разм­ножения, поскольку из одной клетки формируется только одна спора. Биологическая роль спор - сохранение вида в неблагоприятных усло­виях внешней среды.

Превращение бактериальной клетки в спору происходит при по­падании бактерии во внешнюю среду, чаще всего - в почву. Спора формируется внутри клетки, затем вегетативное тело лизируется. Об­разование споры происходит в течение суток. Споры чрезвычайно ус­тойчивы и могут длительное время сохранять жизнеспособность: де­сятками лет остаются живыми в почве споры возбудителей сибирской язвы, столбняка, ботулизма. Они не погибают при 100°С, убить их можно только автоклавированием, сухим жаром при 160-170°С в течение 1-2 часов, или с помощью спороцидных химических веществ. При попадании в благоприятные условия (оптимальная температура, достаточная влажность, наличие питательных веществ) происходит про­растание спор в вегетативные формы. Прогревание спор при 100°С вызывает их тепловую активацию с последующим прорастанием. Это явление используется при стерилизации дробными методами.

Спорообразование - одно из свойств, характерное для определенных видов бактерий. Форма и расположение споры внутри клетки являются постоянным признаком вида и могут быть использованы для его идентификации. Форма спор бывает круглой или овальной. Расположение центральное - у бацилл сибирской язвы, субтерминальное (ближе к одному из концов) - у клостридий ботулизма и газовой анаэробной инфекции, терминальное (на конце) - у клостридий столб­няка. Для окраски спор применяют способ Ожешки, основанный на их кислотоустойчивости.

Жгутики. Многие виды бактерий способны передвигаться благо­даря наличию жгутиков. Из патогенных бактерий только среди пало­чек и извитых форм имеются подвижные виды. Жгутики представляют собой тонкие эластичные нити, длина которых у некоторых видов в несколько раз больше длины тела самой бактерии. Число и располо­жение жгутиков является характерным видовым признаком бактерий. Различают бактерии: монотрихи - с одним жгутиком на конце тела, лофотрихи - с пучком жгутиков на конце, амфитрихи, имеющие жгути­ки на обоих концах, и перитрихи, у которых жгутики расположены по всей поверхности тела. К монотрихам относится холерный вибрион, к перитрихам - сальмонеллы брюшного тифа.

Жгутики настолько тонки, что не видны в световом микроскопе. Их можно видеть в электронном микроскопе, а также при специальных способах окраски, когда толщину жгутика искусственно увеличивают: при помощи танина достигают набухания жгутикового белка, а затем обрабатывают азотнокислым серебром или красителем, который осе­дает на жгутиках, увеличивая их толщину. Можно косвенно судить о наличии жгутиков, наблюдая подвижность живых бактерий в препа­ратах " раздавленной" или " висячей" капли. Определение подвижнос­ти у бактерий является важным диагностическим признаком, и при по­вседневной практической работе удобно применять метод посева. В столбик полужидкого питательного агара уколом производится посев бактерий. Неподвижные бактерии растут по ходу укола, а у подвиж­ных наблюдается диффузный рост.

Капсула - наружный слизистый слой, который имеется у многих бактерий. У одних видов он настолько тонок, что обнаруживается толь­ко в электронном микроскопе - это микрокапсула. У других видов бак­терий капсула хорошо выражена и видна в обычном оптическом мик­роскопе - это макрокапсула. Капсула обычно состоит из полисахаридов, а у палочки сибирской язвы - из полипептидов

Одни бактерии образуют капсулу только в организме хозяина, на­пример, пневмококки, палочка сибирской язвы, палочка чумы; другие постоянно сохраняют ее, - это капсульные бактерии, например, клебсиеллы. Капсула защищает бактерии от фагоцитоза и антител, поэтому в инфекционном процессе она играет роль одного из факторов патогенности, обеспечивающего антифагоцитарную активность возбудителя болезни. Наличие капсулы является дифференциальным признаком для оп­ределения вида таких микробов, как пневмококк, палочка сибирской язвы, клебсиеллы пневмонии, которые образуют макрокапсулу, види­мую в световом микроскопе. Для обнаружения капсулы применяют спо­соб окраски по Бурри-Гинсу: при этом на темном фоне туши видны ок­рашенные фуксином бактерии, окруженные бесцветной капсулой.

Эукариоты (греч eu - хорошо, karyon - ядро) - высшие микроорганизмы Клетка эукариот имеет истинное ядро (лат - nucleus). отделенное от цитоплазмы ядерной мембраной и содержащее двойной набор хромосом. Клетки эукариотов делятся как по типу митоза, так и по типу мейоза, в их цитоплазме содер­жатся эндоплазматическая сеть, митохондрии или хлоропласты. В цитоплазме эукариотов содержатся 80S-рибосомы (S - константа седиментации, харак­теризующая размер частиц) Все эукариоты - аэробы.

Прокариоты, напротив, не имеют истинною ядра - у них нуклеоид, содержащий ДНК, не отделен от цитоплаз­мы ядерной мембраной и свободно располагается в цитоплазме. Деление прокариотических клеток происходит по типу амитоза. Цитоплазма содержит 70S-рибосомы, которые меньше по раз­меру, чем рибосомы в цитоплазме эукариотов. Строение клеточных мембран и жгутиков у прокариотов иное, а клеточная стенка содержит полимерное соединение – пептидогликан, которого нет у эукариотов. Среди прокариотов есть аэробы и анаэробы.

Протопласты- бактерии, полностью лишены клеточной стенки. Образуются из Грам + бактерий;

Сферопласты- бактерии с частично сохранившейся клеточной стенкой. Образуются из Грам-;

L- формы бактерий- это бактерии полностью или частично утратившие клеточную стенку, но способны к размножению.

n Основные свойства L-форм бактерий: постепенное превращение из грамположительных в грамотрицательные;

n изменение антигенных свойств;

n снижение вирулентности;

n способность к длительной персистенции;

n способность при неполной утрате синтеза клеточной стенки к возврату в исходную форму.

Актиномицеты

Актиномицеты - одноклеточные микроорганизмы, относятся к прокариотам. Их клетки имеют такую же структуру, как бактерии: кле­точную стенку, содержащую пептидогликан, цитоплазматическую мем­брану; в цитоплазме расположены нуклеоид, рибосомы, мезосомы, внутриклеточные включения. Поэтому патогенные актиномицеты чувс­твительны к антибактериальным препаратам. В то же время они име­ют сходную с грибами форму ветвящихся переплетающихся нитей, а некоторые актиномицеты, относящиеся к семейству стрентомицет, раз­множаются спорами. Другие семейства актиномицет размножаются путем фрагментации, то есть распада нитей на отдельные фрагменты.

Актиномицеты широко распространены в окружающей среде, осо­бенно в почве, участвуют в круговороте веществ в природе. Среди актиномицетов есть продуценты антибиотиков, витаминов, гормонов. Большинство антибиотиков, применяемых в настоящее время, проду­цируется актиномицетами. Это стрептомицин, тетрациклин и другие.

Патогенные представители актиномицетов вызывают у человека актиномикоз и нокардиоз. Это Actinomyces israelli, Nocardia asteroides и другие. Возбудители актиномикоза вне организма, на питательной среде представляют собой длинные ветвящиеся нити, местами распа­дающиеся на фрагменты. В организме человека патогенные актиноми­цеты образуют друзы - переплетающиеся нити в центре с отдельными отходящими в виде лучей нитями по периферии. Отсюда название: ак­тиномицеты - лучистые грибы. Концы нитей, погруженные в ткань, утол­щены, ослизнены и имеют иной химический состав, и, подобно капсу­ле бактерий, защищают микроб от фагоцитоза.

 

Спирохеты.

Спирохеты относятся к прокариотам. Имеют признаки, общие как с бактериями, так и с простейшими микроорганизмами. Это од­ноклеточные микробы, имеющие форму длинных тонких спирально изогнутых клеток, способны к активному движению. В неблагоприят­ных условиях некоторые из них могут переходить в форму цисты.

Исследования в электронном микроскопе позволили установить структуру клеток спирохет. Это цитоплазматические цилиндры, окру­женные цитоплазматической мембраной и клеточной стенкой, содер­жащей пептидогликан. В цитоплазме находятся нуклеоид, рибосомы, мезосомы, включения. Под цитоплазматической мембраной располо­жены фибриллы, обеспечивающие разнообразное движение спирохет - поступательное, вращательное, сгибательное.

Сапрофитные спирохеты имеются в окружающей среде. Несколь­ко непатогенных видов являются постоянными обитателями организ­ма человека. Патогенные для человека виды относятся к трем родам: Treponema, Borrelia, Leptospira. Они различаются по форме и рас­положению завитков. Трепонемы состоят из 8-12 одинаковых по ве­личине завитков, положение которых при движении не меняется. Боррелии образуют 5-8 завитков, меняющихся при движении подобно дви­жению змейки. Лептоспиры состоят из 40-50 очень мелких постоянных завитков, концы изогнуты в виде крючков и имеют утолщения. При движении концы лептоспир изгибаются в разные стороны, причем об­разуются форму в виде русской буквы С или латинской S. Спирохеты за исключением боррелий, плохо воспринимают анилиновые красители, поэтому их окрашивают по Романовскому-Гимза. По лучше всего на­блюдать спирохеты в живом виде в темном поле зрения.

Патогенные представители спирохет: Treponema pallidum - вызывает сифилис, Borrelia recurrentis - возвратный тиф, Borrelia burgdorferi - болезнь Лайма, Leptospira interrogans – лептоспироз

 

Микоплазмы

Микоплазмы относятся к прокариотам, размеры их 125-200 нм. Это наиболее мелкие из клеточных микробов, величина их близка к преде­лу разрешающей способности оптического микроскопа. У них отсут­ствует клеточная стенка, и в этом отношении они близки к L-формам бактерий. С отсутствием клеточной стенки связаны характерные осо­бенности микоплазм. Они не имеют постоянной формы, поэтому встре­чаются сферические, овальные, нитевидные формы. Так как микоплазмы не образуют пептидогликана, они нечувствительны к пенициллинам и другим антибиотикам, избирательно подавляющим синтез этого вещества.

Микоплазмы широко распространены в природе. Их можно выде­лить из почвы, сточных вод, от животных и человека. Существуют и патогенные виды: Mycoplasma pneumoniae является возбудителем рес­пираторных заболеваний. Условно-патогенные Микоплазмы также иг­рают роль в развитии заболеваний: M.hominis - заболеваний мочепо­лового тракта, M.arthritidis - ревматоидного артрита. Из рода уреаплазм патогенными являются Ureaplasma urealyticum, вызывающие за­болевания мочеполовых органов.

Хламидии

Хламидии - мелкие прокариотные микробы, сходные по химичес­кому составу с грамотрицательными бактериями. Это строгие внут­риклеточные паразиты, так как не образуют АТФ и потому не спо­собны к самостоятельному процессу биологического окисления, т.е. это " энергетические паразиты". Вне клеток хозяина хламидии представля­ют собой элементарные тельца сферической формы размером 300 нм. В клетке хозяина они превращаются в более крупные ретикулярные тель­ца, которые делятся и образуют микроколонии хламидии, которые мож­но видеть в клетке в виде включений. Образовавшиеся в результате элементарные тельца выходят из клетки и совершают новый цикл в других клетках. Патогенные для человека виды: Chlamydia psittaci -возбудитель орнитоза, источником которого являются птицы; C.trachomatis - возбудитель трахомы, поражающей конъюнктиву глаз и хламидиозного уретрита - заболевания, передающегося половым пу­тем; C.pneumoniae - возбудитель воспаления легких.

Окраска по Цилю-Нильсену.

1. На фиксированный препарат помещают полоску фильтровальной бумаги, наливают карболовый фуксин Циля и осторожно нагревают на горелке до появления пара, не допуская кипения жидкости. Нагревание повторяют 3 раза.

2. Снимают бумагу, промывают водой.

3. Погружают 3 раза в 5% раствор серной кислоты.

4. Промывают препарат водой и докрашивают метиленовой синью 5 минут.

5. Промывают водой, высушивают препарат фильтровальной бумагой, микроскопируют.

Репродукция вирусов

Вирусы не способны размножаться на питательных средах - это строгие внутриклеточные паразиты. Более того, в отличие от риккетсий и хламидий, вирусы в клетке хозяина не растут и не размножаются путем деления. Составные части вируса - нуклеиновые кислоты и бел­ковые молекулы синтезируются в клетке хозяина раздельно, в разных частях клетки - в ядре и в цитоплазме. При этом клеточные белоксинтезирующие системы подчиняются вирусному геному, его НК.

Репродукция вируса в клетке происходит в несколько фаз (рис.7):

- Первая фаза - адсорбция вируса на поверхности клетки, чувстви­тельной к данному вирусу.

- Вторая фаза - проникновение вируса в клетку хозяина путем виропексиса.

- Третья фаза - «раздевание» вирионов, освобождение нуклеи­новой кислоты вируса от суперкапсида и капсида. У ряда вирусов проникновение нуклеиновой кислоты в клетку происходит путем сли­яния оболочки вириона и клетки-хозяина. В этом случае вторая и тре­тья фазы объединяются в одну.

В зависимости от типа нуклеиновой кислоты этот процесс совер­шается следующим образом.

ДНК-содержащие (ДНК —> иРНК —> белок)

1. Репродукция происходит в ядрх: аденовирусы, герпес, папо-вавирусы. Используют ДНК-зависимую РНК - полимеразу клетки.

2. Репродукция происходит в цитоплазме: вирусы имеют свою ДНК-зависимую РНК полимеразу. РНК-содержащие.

1. Рибовирусы с позитивным геномом (плюс-нитиевые): пикор-

на-, тога-, коронавирусы. Транскрипции нет.

РНК —> белок

2. Рибовирусы с негативным геномом (минус- нитиевые): грипп,

корь, паротит, орто-, парамиксовирусы.

(-)РНК —> иРНК —> белок (иРНК комплементарная (-)РНК) Этот процесс идет при участии специального вирусного фермен­та - вирионная РНК-зависимая PHK-полимераза ( в клетке такого фермента быть не может).

3. Ретровирусы

(-)РНК -> ДНК —> иРНК —> белок (и РНК гомологична РНК) В этом случае процесс образования ДНК на базе (-)РНК возмо­жен при участии фермента - РНК-зависимой ДНК-полимеразы (об­ратной транскриптазы или ревертазы)

- Четвертая фаза - синтез компонентов вириона. Нуклеиновая кис­лота вируса образуется путем репликации. На рибосомы клетки транс­лируется информация вирусной иРНК, и в них синтезируется вирус-специфический белок.

- Пятая фаза - сборка вириона. Путем самосборки образуются нуклеокапсиды.

- Шестая фаза - выход вирионов из клетки. Простые вирусы, на­пример, вирус полиомиелита, при выходе из клетки разрушают ее. Сложноорганизованные вирусы, например, вирус гриппа, выходят из клетки путем почкования. Внешняя оболочка вируса (суперкапсид) формируется в процессе выхода вируса из клетки. Клетка при таком процессе на какое-то время остается живой.

Описанные типы взаимодействия вируса с клеткой называются продуктивными, так как приводят к продукции зрелых вирионов.

Иной путь - интегративный - заключается в том, что после проник­новения вируса в клетку и " раздевания" вирус­ная нуклеиновая кисло­та интегрирует в клеточ­ный геном, то есть встраивается в опреде­ленном месте в хромосо­му клетки и затем в виде так называемого прови-руса реплицируется вме­сте с ней. Для ДНК- и РНК-содержащих виру­сов этот процесс совер­шается по-разному. В первом случае вирусная ДНК интегрирует в кле­точный геном. В случае РНК-содержащих виру­сов вначале происходит обратная транскрипция: на матрице вирусной РНК при участии фермента " обратной транскриптазы" образуется ДНК, которая встраи­вается в клеточный геном. Провирус несет дополнительную генетичес­кую информацию, поэтому клетка приобретает новые свойства. Виру­сы, способные осуществить такой тип взаимодействия с клеткой, на­зываются интегративными. К интегративным вирусам относятся неко­торые онкогенные вирусы, вирус гепатита В, вирус герпеса, вирус им­мунодефицита человека, умеренные бактериофаги.

Кроме обычных вирусов, существуют прионы - белковые инфек­ционные частицы, не содержащие нуклеиновую кислоту. Они имеют вид фибрилл, размером до 200 нм. Вызывают у человека и у животных медленные инфекции с поражением мозга: болезнь Крейтцфельда-Якоба, куру, скрепи и другие.

Структура бактериофагов

Размеры бактериофагов колеблются от 20 нм до 200 нм. Как все вирусы, содержат ДНК, или РНК, и белковый капсид. Чаще всего встре­чаются и лучше изучены бактериофаги, имеющие форму сперматозои­да или головастика. Состоят они из головки, хвостового отростка, батальной пластинки с короткими шинами и хвостовыми нитями. Внутри головки располагается спи­рально скрученная пить ДНК, по­крытая белковым капсидом. Хвостовой отросток - что полый цилиндрический стержень, окру­женный сократительным чехлом. Базальная пластинка и нити осу­ществляют процесс адсорбции бактериофага на бактериальной клетке (рис. 9). Существуют бакте-риофаш. имеющие другое строе­ние: с короткими отростком, с отростком без сократительного чехла, без отростка, нитевидной формы.

Методы стерилизации

Вид стерилизации Аппаратура Режим стерилизации Материал
1.Прокаливание Спиртовая горелка до красного каления Бактериологическая петля, пинцеты.
2. Сухим жаром Аппарат для суховоздушной стерилизации 160-170°С 45 минут Стеклянная посуда: чашки Петри, Пробирки, флаконы, колбы.
3. Паром под давлением Автоклав давление 1 атм. 120°С 15-30 минут Дистиллированная вода, растворы лекарственных препаратов, физиологический раствор, бельё, перевязочный материал, простые питательные среды (МПА, МПБ).
4. Текучим паром Аппарат Коха, автоклав 100°С по 1 часу 3 дня подряд Лекарственные препараты, углеводсодержащие питательные среды.
5. Тиндализация (дробная стерилизация) Водяная баня 56-58°С 5-7 дней подряд по 1 часу Белковые питательные среды, лечебные биопрепараты.

Типы и механизмы действия

Различают бактерицидное и бактериостатическое действие:

- бактериостатическое (лат. stasis - стояние) - задержка роста бак­терий;

- бактерицидное (лат. caedere - убивать) - губительное действие на бактерии.

Бактериостатическое действие обнаруживается по его обрати­мости: после пересева бактерий в свежую питательную среду без пре­парата наблюдается рост бактерий. При бактерицидном действии пе­ресев на свежую среду не дает роста.

Тот или иной тип действия зависит от характера препарата и от дозы. Как правило, при малых дозах препарата наблюдается бак­териостатическое действие, при больших - бактерицидное. Но есть ис­ключения. Например, налидиксовая кислота в малых дозах повреж­дает ДНК и таким образом оказывает бактерицидное действие, а в больших дозах повреждает РНК, вызывает нарушение биосинтеза бел­ка, что ведет к бактериостатическому действию. Большинство анти­биотиков обладает бактерицидной активностью. Преимущественно бактериостатическое действие оказывают тетрациклины, левомицетин, макролиды.

По механизму действия различают следующие группы антибиоти­ков:

1) антибиотики, подавляющие синтез клеточной стенки бактерий: пенициллин, цефалоспорины, циклосерин. Пенициллин нарушает про­цесс образования полимерного соединения - пептидогликана, поэтому действует на молодые растущие клетки бактерий. Поскольку клетки человеческого организма не содержат пептидогликана, пеницилин не повреждает их;

2) антибиотики, нарушающие функции цитоплазматической мемб­раны: полимиксины, а также полиеновые противогрибковые антибио­тики: нистатин, леворин, амфотерицин В. Полиеновые антибиотики адсорбируются на цитоплзматической мембране, взаимодействуют со стерольным компонентом, повышают проницаемость мембраны, что приводит к нарушению водно-солевого обмена клетки и к ее гибели. У бактерий и риккетсий в мембране нет стеролов, поэтому эти мик­роорганизмы нечувствительны к полиеновым антибиотикам;

3) антибиотики, ингибирующие синтез белка на рибосомах бак­териальных клеток: аминогликозиды, тетрациклины, левомицетин, мак­ролиды. Перечисленные антибиотики блокируют рибосомы бакте­риальной клетки и не оказывают действия на рибосомы клеток чело­века вследствие различий в структуре и молекулярной массе рибосом прокариотов и эукариотов.

4) антибиотики, ингибирующие РНК-полпмеразы - рифампицин, подавляющий синтез РНК на матрице ДНК;

5) антибиотики, вызывающие лизис клеточной стенки бактерий - лизоцим.

Механизм действия многих химиотерапевтических препаратов свя­зан с тем, что они являются антиметаболитами, то есть структурными аналогами важнейших метаболитов, участвующих в обмене веществ бактерий. Будучи сходными с метаболитом, они вытесняют его из об­менного процесса, но не обеспечивают нормального его течения. Так, сульфаниламиды являются структурными аналогами парааминобензойной кислоты (ПАБК) - кофермента фолпевой кислоты. Норсульфазол - аналог тиамина (витамина В1). Противотуберкулез­ные препараты - гидразиды изоникотиновой кислоты (ГИНК) - анало­ги изоникотиновой кислоты.

Раздел 2

1 Инфекция (лат. inficere - заражать), или инфекционный процесс -это процесс взаимодействия патогенного микроорганизма и воспри­имчивого макроорганизма (хозяина) в определенных условиях внеш­ней среды. В крайней своей форме инфекционный процесс выражается в виде инфекционного заболевания.

Попадание микроорганизма в организм человека не всегда при­водит к заболеванию. Возникновение, течение и исход инфекционного процесса зависят от трех основных условий. Это: I) свойства патоген­ного микроорганизма; 2) состояние восприимчивого макроорганизма; 3) условия внешней среды. Кроме того, имеют значение входные воро­та инфекции и доза микробов.

Врожденные инфекции

Наследственные инфекции у человека не описаны. Наследственными можно считать такие инфекции, при которых возбудитель передается с половой клеткой, как это происходит с вирусом энцефалита у клещей.

У человека описаны врожденные инфекции, развивающиеся вслед

ствие передачи возбудителя от матери плоду через плаценту. Возмож­ность такого проникновения увеличивается вследствие патологического изменения плаценты. Известны такие врожденные заболевания, как сифилис, токсоплазмоз, краснуха, СПИД и другие.

Внутрибольничные инфекции

К внутрибольничным или госпитальным инфекциям относят все инфекционные заболевания, возникающие у больных или у больнично­го персонала в результате пребывания в больнице. Большинство внут-рибольничных инфекций вызывается условно-патогенными микробами, но в некоторых случаях и патогенными возбудителями, например, ви­русом гриппа.

Внутрибольничные инфекции известны давно. До открытия мик­роорганизмов и введения асептики и антисептики бактериальные ин­фекции были обычными спутниками хирургических послеоперацион­ных ран и травматических повреждений. С введением антисептики в 60-х гг. XIX века частота инфекционных осложнений уменьшилась. С открытием антибиотиков и введением их в лечебную практику в 40-50-х гг. XX века резко снизилось число инфекционных осложнений и ле­тальность от них. Однако в настоящее время наблюдается нарастание частоты внутрибольничных инфекций. Причины этого отчасти связа­ны с достижениями современной медицины:

1) широкое, часто неоправданное применение антибиотиков, при­ведшее к распространению резистентных микробов;

2) применение в медицинской практике инвазивных методов ди­агностики с нарушением целостности кожи и слизистых оболочек и проникновением во внутренние органы;


Поделиться:



Популярное:

  1. A.19. Противопожарная система
  2. I. ПОЛОЖЕНИЯ И НОРМЫ ДЕЙСТВУЮЩЕГО ЗАКОНОДАТЕЛЬСТВА, В ОБЛАСТИ ОРГАНИЗАЦИИ ПРОТИВОПОЖАРНОЙ ПРОПАГАНДЫ И ОБУЧЕНИЯ НАСЕЛЕНИЯ МЕРАМ ПОЖАРНОЙ БЕЗОПАСНОСТИ
  3. I. Преступления против личности
  4. II. Противопожарный инструктаж
  5. Joint Strike Fighter (F-35) против F-22 (ВВС)
  6. XVII. ТАИНСТВЕННЫЙ ПРОТИВНИК
  7. А если хочешь узнать что у тебя за команда, достаточно сыграть с сильным противником. Ты сразу удивишь все недостатки и недоработки, узнаешь, кто из игроков что стоит.
  8. Анализ расчета фильтрационного сопротивления, при притоке жидкости к несовершенной скважине по линейному закону фильтрации
  9. Анализ решения задачи нахождения коэффициента фильтрационного сопротивления, обусловленного несовершенством скважины по степени вскрытия, по приближенным формулам
  10. Ангельская терапмя против пристрастия к еде
  11. Антитезы, зевгмы, хиазм (противоположный порядок слов: над зелёным холмом, над холмом зелёным), у символистов.
  12. Аргументы против увеличения темпов экономического роста


Последнее изменение этой страницы: 2016-07-13; Просмотров: 557; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.072 с.)
Главная | Случайная страница | Обратная связь