Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Оптические дефекты изображения.



Иногда изображение на фотографии заметно отличается от реального вида объекта съемки. Затемнение кадра по краям, цветовые ореолы на контрастных участках, изменение геометрии объекта – все эти недостатки относятся к оптическим дефектам изображения. Всего существует четыре вида подобных дефектов: хроматические аберрации, дисторсия, виньетирование, бэк и фронт фокус.
Глаз — это система линз. Диаметр глаза ≈ 23 мм. Через глаз мы получаем до 90% информации.
Основные свойства и оптические характеристики глаза:

Аккомодация—свойство глаза, обеспечивающее четкое восприятие разноудаленных предметов. Изменяется главный фокус глаза от 16 до13 мм. Оптическая сила глаза от 60 до 75 дптр.

Предельный угол зрения (φ =1') c приближением предмета увеличивается угол зрения, под которым мы видим две близкие точки предмета.

Адаптация—приспосабливаемость к различным условиям освещенности: диаметр зрачка меняется от 2 до 8 мм.

Поле зрения: по оси ОХ 150°, по оси OY 125°. Спектральная чувствительность от 380 до 760 нм. Самая большая чувствительность 555 нм (зеленый цвет).

Острота зрения — свойство глаза раздельно различать две близкие точки.

Расстояние наилучшего зрения d0=250 мм. Дальние предметы глаз видит без напряжения.

Оптические приборы  
Лупа Увеличить угол зрения можно, используя лупу, микро­скоп: Так как OB2=d0,, a OB1≈ F, то
Фотоаппарат (1837) К— светонепроницаемая камера; О — объектив (может перемещаться относительно пленки); /7 — пленка или светочувствительная пластина; ВА — предмет; А1В1 изображение. Как и в глазу, в фотоаппарате получается действительное, перевернутое, уменьшенное изображение. Основное отличие заключается в том, что фокусное расстояние зрачка меняется (аккомодация), а у фотоаппарата меняется расстояние от линзы до изображения.
Проекционный аппарат S- источник света; R — рефлектор (вогнутое зеркало). К—конденсатор (плосковыпуклые линзы), собирает лучи в пучок; D —прозрачный диапозитив; О — объектив, расположенный в фокусе конденсатора, который проецирует освещенный диапозитив на экран. Для получения четкого изображения на экране диапозитив помещают от объектива на расстоянии d, удовлетворяющем условию: F<.d< 2F.Чем дальше экран, тем больше d.


5.4 Электромагнитный спектр
Электромагнитная волна
- волна, порожденная колебанием параметра электромагнитного поля.
В зависимости от длины волны в вакууме, источника излучения и способа возбуждения различают: низкочастотные колебания, радиоволны, инфракрасное излучение, видимое излучение, ультрафиолетовое излучение, рентгеновское излучение, гамма-лучи.
Существование электромагнитных волн было теоретически предсказано великим английским физиком Дж. Максвеллом в 1864 году. Максвелл проанализировал все известные к тому времени законы электродинамики и сделал попытку применить их к изменяющимся во времени электрическим и магнитным полям. Он обратил внимание на ассиметрию взаимосвязи между электрическими и магнитными явлениями. Максвелл ввел в физику понятие вихревого электрического поля и предложил новую трактовку закона электромагнитной индукции, открытой Фарадеем в 1831 г.:

Всякое изменение магнитного поля порождает в окружающем пространстве вихревое электрическое поле, силовые линии которого замкнуты.

Максвелл высказал гипотезу о существовании и обратного процесса:

Изменяющееся во времени электрическое поле порождает в окружающем пространстве магнитное поле.

Рентге́ новское излуче́ ние — электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением, что соответствует длинам волн от 10− 2 до 102 Å (от 10− 12 до 10− 8 м).
Рентгеновские лучи возникают при сильном ускорении заряженных частиц (тормозное излучение), либо при высокоэнергетических переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках. Основными конструктивными элементами таких трубок являются металлические катод и анод (ранее называвшийся также антикатодом). В рентгеновских трубках электроны, испущенные катодом, ускоряются под действием разности электрических потенциалов между анодом и катодом (при этом рентгеновские лучи не испускаются, так как ускорение слишком мало) и ударяются об анод, где происходит их резкое торможение. При этом за счёт тормозного излучения происходит генерация излучения рентгеновского диапазона, и одновременно выбиваются электроны из внутренних электронных оболочек атомов анода. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с характерным для материала анода спектром энергий.
На Земле электромагнитное излучение в рентгеновском диапазоне образуется в результате ионизации атомов излучением, которое возникает при радиоактивном распаде, в результате Комптон-эффекта гамма-излучения, возникающего при ядерных реакциях, а также космическим излучением. Радиоактивный распад также приводит к непосредственному излучению рентгеновских квантов, если вызывает перестройку электронной оболочки распадающегося атома (например, при электронном захвате). Рентгеновское излучение, которое возникает на других небесных телах, не достигает поверхности Земли, так как полностью поглощается атмосферой.
Рентгеновское излучение было открыто Вильгельмом Конрадом Рентгеном. Он был первым, кто опубликовал статью о рентгеновских лучах, которые он назвал X-лучами (x-ray). Статья Рентгена под названием «О новом типе лучей» была опубликована 28-го декабря 1895 года в журнале Вюрцбургского физико-медицинского общества.

Но еще за 8 лет до этого — в 1887 году Никола Тесла в дневниковых записях зафиксировал результаты исследования рентгеновских лучей и испускаемое ими тормозное излучение, однако ни Тесла, ни его окружение не придали серьёзное значение этим наблюдениям. Кроме этого, уже тогда Тесла предположил опасность длительного воздействия рентгеновских лучей на человеческий организм.

5.5 Введение в современной физике.
Фотоэффе́ кт
, Фотоэлектрический эффект — испускание электронов веществом под действием света (или любого другого электромагнитного излучения). В конденсированных (твёрдых и жидких) веществах выделяют внешний и внутренний фотоэффект.

Законы Столетова для фотоэффекта:

Формулировка 1-го закона фотоэффекта: Сила фототока прямо пропорциональна плотности светового потока.

Согласно 2-му закону фотоэффекта, максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от его интенсивности.

3-й закон фотоэффекта: для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света (или максимальная длина волны λ 0), при которой ещё возможен фотоэффект, и если , то фотоэффект уже не происходит.

Квант света (фотон) -частица света, либо же порция света, которая либо поглощается, либо излучается телом. Его существование предложил Макс Планк дабы объяснить многие неясности из законов Вина, Релея-Джинса и других.
А́ том — частица вещества микроскопических размеров и массы, наименьшая часть химического элемента, являющаяся носителем его свойств.

Атом состоит из атомного ядра и электронов. Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называется ионом. В некоторых случаях под атомами понимают только электронейтральные системы, в которых заряд ядра равен суммарному заряду электронов, тем самым противопоставляя их электрически заряженным ионам.

Ядро, несущее почти всю (более чем 99, 9 %) массу атома, состоит из положительно заряженных протонов и незаряженных нейтронов, связанных между собой при помощи сильного взаимодействия. Атомы классифицируются по количеству протонов и нейтронов в ядре. Число протонов Z соответствует порядковому номеру атома в периодической системе Менделеева и определяет его принадлежность к некоторому химическому элементу, а число нейтронов N — определённому изотопу этого элемента. Число Z также определяет суммарный положительный электрический заряд (Ze) атомного ядра и число электронов в нейтральном атоме, задающее его размер.

Атомы различного вида в разных количествах, связанные межатомными связями, образуют молекулы.

А́ томное ядро́ — центральная часть атома, в которой сосредоточена основная его масса (более 99, 9 %). Ядро заряжено положительно, заряд ядра определяет химический элемент, к которому относят атом. Размеры ядер различных атомов составляют несколько фемтометров, что в более чем в 10 тысяч раз меньше размеров самого атома.
В 1911 году Резерфорд в своём докладе «Рассеяние α - и β -лучей и строение атома» в философском обществе Манчестера заявил[4]:

Рассеяние заряженных частиц может быть объяснено, если предположить такой атом, который состоит из центрального электрического заряда, сосредоточенного в точке и окружённого однородным сферическим распределением противоположного электричества равной величины. При таком устройстве атома α - и β -частицы, когда они проходят на близком расстоянии от центра атома, испытывают большие отклонения, хотя вероятность такого отклонения мала.

Таким образом, Резерфорд открыл атомное ядро, с этого момента и ведёт начало ядерная физика, изучающая строение и свойства атомных ядер.

После обнаружения стабильных изотопов элементов, ядру самого лёгкого атома была отведена роль структурной частицы всех ядер. С 1920 года ядро атома водорода имеет официальный термин — протон. После промежуточной теории протон- трактовался электронной теории строения ядра, имевшей немало явных недостатков, в первую очередь она противоречила экспериментальным результатам измерений спинов и магнитных моментов ядер, в 1932 году Джеймсом Чедвиком была открыта новая электрически нейтральная частица, названная нейтроном. В том же году Иваненко и, независимо, Гейзенберг выдвинули гипотезу о протон-нейтронной структуре ядра. Эта гипотеза была полностью подтверждена всем последующим ходом развития ядерной физики и её приложений.
Линейный спектр - Состоит из отдельных линий разного или одного цвета, имеющих разные расположения. Испускается газами, парами малой плотности в атомарном состоянии. Позволяет по спектральным линиям судить о химическом составе источника света.

Квантование энергии

 

 

Ква́ нтовая фи́ зика — раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения. Основные законы квантовой физики изучаются в рамках квантовой механики и квантовой теории поля и применяются в других разделах физики. Квантовая физика и её основные теории — квантовая механика, квантовая теория поля — были созданы в первой половине XX века многими учёными, среди которых Макс Планк, Альберт Эйнштейн, Артур Комптон, Луи де Бройль, Нильс Бор, Эрвин Шрёдингер, Поль Дирак, Вольфганг Паули.
А́ томное ядро́ — центральная часть атома, в которой сосредоточена основная его масса (более 99, 9 %). Ядро заряжено положительно, заряд ядра определяет химический элемент, к которому относят атом. Размеры ядер различных атомов составляют несколько фемтометров, что в более чем в 10 тысяч раз меньше размеров самого атома.

Атомные ядра изучает ядерная физика.

Атомное ядро состоит из нуклонов — положительно заряженных протонов и нейтральных нейтронов, которые связаны между собой при помощисильного взаимодействия. Протон и нейтрон обладают собственным моментом количества движения (спином), равным [сн 1] и связанным с ним магнитным моментом.

·
Я́ дерная реа́ кция — это процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, сопровождающийся изменением состава и структуры ядра и выделением большого количества энергии. Впервые ядерную реакцию наблюдал Резерфорд в 1919 году, бомбардируяα -частицами ядра атомов азота, она была зафиксирована по появлению вторичных ионизирующих частиц, имеющих пробег в газе больше пробега α -частиц и идентифицированных как протоны.
Зако́ ны сохране́ ния — фундаментальные физические законы, согласно которым при определённых условиях некоторые измеримые физические величины, характеризующие замкнутую физическую систему, не изменяются с течением времени.
Закон сохранения энергии

· Закон сохранения импульса

· Закон сохранения момента импульса

· Закон сохранения массы

· Закон сохранения электрического заряда

· Закон сохранения лептонного числа

· Закон сохранения барионного числа

· Закон сохранения чётности

Различаютестественную иискусственную радиоактив­ность. Естественной называют радиоактивность естествен­ных изотопов, т. е. химических элементов, которые встре­чаются в природе.Искусственной называют радиоактив­ность изотопов, получаемых искусственным путем. Есте­ственная радиоактивность наблюдается у таких изотопов химических элементов, как, например, радий, ypart, торий и другие.
Достижения современной физики позволили получить очень большое количество искусственных радиоактивных изотопов. В настоящее время получены радиоактивные изотопы всех известных на сегодня химических элемен­тов, начиная от водорода, самого легкого химического элемента, занимающего первое место в таблице Менде­леева, и кончая центурием — самым тяжелым элементом, занимающим последнее, сотое место в этой таблице. При­чем для многих химических элементов получены не­сколько изотопов.


Естественная радиоактивность
1. Космическое излучение и солнечная радиация— это источники колоссальной мощности, которые в мгновение ока могут уничтожить и Землю, и всё живое на ней. К счастью, от этого вида радиации у нас есть надёжный защитник — атмосфера. Впрочем, интенсивная человеческая деятельность приводит к появлению озоновых дыр и истончению естественной оболочки, поэтому в любом случае следует избегать воздействия прямых солнечных лучей. Интенсивность влияния космического излучения зависит от высоты над уровнем моря и широты. Чем выше Вы над Землей, тем интенсивнее космическое излучение, с каждой 1000 метров сила воздействия удваивается, а на экваторе уровень излучения гораздо сильнее, чем на полюсах.

Ученые отмечают, что именно с проявлением космической радиации связаны частые случаи бесплодия у стюардесс, которые основное рабочее время проводят на высоте более десяти тысяч метров. Впрочем, обычным гражданам, не увлекающимися частыми перелетами, волноваться о космическом излучении не стоит.

2. Излучение земной коры. Помимо космического излучения радиоактивна и сама наша планета. В её поверхности содержится много минералов, хранящих следы радиоактивного прошлого Земли: гранит, глинозём и т.п. Сами по себе они представляют опасность лишь вблизи месторождений, однако человеческая деятельность ведёт к тому, что радиоактивные частицы попадают в наши дома в виде стройматериалов, в атмосферу после сжигания угля, на участок в виде фосфорных удобрений, а затем и к нам на стол в виде продуктов питания. Известно, что в кирпичном или панельном доме уровень радиации может быть в несколько раз выше, чем естественный фон данной местности. Таким образом, хоть здание и может в значительной мере уберечь нас от космического излучения, но естественный фон легко превышается от использования опасных материалов. Уберечься от таких «сюрпризов» можно, только используя дозиметры. По мнению специалистов www.dozimetr.biz, это единственный способ померить уровень радиации в бытовых условиях и не приобретать опасные с радиационной точки зрения материалы.

3. Радон — это радиоактивный инертный газ без цвета, вкуса и запаха. Он в 7, 5 раз тяжелее воздуха, и, как правило, именно он становится причиной радиоактивности строительных материалов. Радон имеет свойство скапливаться под землей в больших количествах, на поверхность же он выходит при добыче полезных ископаемых или через трещины в земной коре.

Радон активно поступает в наши дома с бытовым газом, водопроводной водой (особенно, если её добывают из очень глубоких скважин), или же просто просачивается через микротрещины почвы, накапливаясь в подвалах и на нижних этажах. Снизить содержание радона, в отличие от других источников радиации, очень просто: достаточно регулярно проветривать помещение и концентрация опасного газа уменьшится в несколько раз.

 

Назначение ядерного реактора: преобразование внутренней энергии атомного ядра в электрическую энергию.

В ядерном реакторе осуществляется управляемая цепная реакция деления ядер (при k = 1).
Ядерными реакторами оснащены все АЭС (атомные электростанции).

Основные элементы ядерного реактора:

- топливо (уран-235, уран-238, плутоний-239) в виде стержней
- замедлитель нейтронов (тяжелая вода, графит)
- теплоноситель (вода, жидкий натрий)
- устройство для регулирования реакции (кадмий, бор)
- защита (оболочка из бетона и железа).
Реактор работает на медленных нейтронах (более эффективно идет деление ядер урана-235).
Активная зона реактора, содержит ядерное топливо - урановые стержни и замедлитель - воду. Вода вокруг урановых стержней является не только замедлителем нейтронов, но и служит для отвода тепла, т.к. внутренняя энергия разлетающихся осколков переходит вовнутреннюю энергию окружающей среды - воды. Активная зона окружена отражателем для возвращения нейтронов и защитным слоем бетона.
Достижение критической массы топлива осуществляется введением регулирующих стержней (до достижения массы урана = критической массе).
Активная зона посредством труб соединена в кольцо (1-ый контур).
Вода прокачивается по трубам контура насосом и отдает свою энергию змеевику в теплообменнике, нагревая воду в змеевике (во 2-м контуре).
Вода в змеевике превращается в пар, температура которого может достигать 540 градусов.
Пар вращает турбину, энергия пара превращается в механическую энергию.
Ось турбины вращает ротор электрогенератора, превращая механическую энергию в электрическую.
Отработанный (охлажденный ) пар поступает в конденсатор, где превращается в воду, возвращающуюся в 1-ый контур.

Первая АЭС была построена в г. Обнинске (СССР).


Поделиться:



Популярное:

  1. Дефекты и статистические методы управления качеством
  2. Дефекты формы и размеров сварных швов
  3. Законы отражения и преломления света. Полное отражение света. Линза. Формула тонкой линзы. Оптические приборы. Оптические кабели на ж/д.
  4. Крупа: химический состав и пищевая ценность, классификация и ассортимент, потребительские свойства, дефекты и хранение
  5. Линейные дефекты - дислокации
  6. Оптические технологии группы xPON.
  7. При нарушении условий и сроков хранения колбас возникают дефекты: ослизнение, плесневение, прогорклость, серо-зеленый цвет фарша или гниение.
  8. Приемы и виды работ над речевым дыханием у детей с нарушенным слухом. Дефекты и коррекция недостатков речевого дыхания.
  9. Принцип построения полной системы наук и способ её изображения.
  10. Статичные и динамические звуковые изображения.
  11. Типичные дефекты при обработке отверстий,


Последнее изменение этой страницы: 2016-05-30; Просмотров: 875; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.035 с.)
Главная | Случайная страница | Обратная связь